Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Apr;91(4):1816–1821. doi: 10.1172/JCI116393

Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect.

E A Kvittingen 1, H Rootwelt 1, P Brandtzaeg 1, A Bergan 1, R Berger 1
PMCID: PMC288163  PMID: 8473520

Abstract

Two Norwegian patients with chronic tyrosinemia type I showed > 50% residual fumarylacetoacetase activity in liver samples obtained during liver transplantation. The enzyme characteristics of both patients were comparable with those of a normal control. Immunohistochemistry on liver sections from these patients and from three other Norwegian tyrosinemia patients revealed a mosaicism of fumarylacetoacetase immunoreactivity corresponding completely or partly to some of the regenerating nodules. This appearance of enzyme protein is presumably induced by the disease process. The mechanism involved remains unclear and could be caused by a genetic alteration, regained translation of messenger RNA, or to enhanced stability of an abnormal enzyme.

Full text

PDF
1816

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger R., Van Faassen H., Taanman J. W., De Vries H., Agsteribbe E. Type I tyrosinemia: lack of immunologically detectable fumarylacetoacetase enzyme protein in tissues and cell extracts. Pediatr Res. 1987 Oct;22(4):394–398. doi: 10.1203/00006450-198710000-00005. [DOI] [PubMed] [Google Scholar]
  2. Berger R., van Faassen H., Smith G. P. Biochemical studies on the enzymatic deficiencies in hereditary tyrosinemia. Clin Chim Acta. 1983 Oct 31;134(1-2):129–141. doi: 10.1016/0009-8981(83)90191-2. [DOI] [PubMed] [Google Scholar]
  3. Chang H. R., Ishizaki K., Sasaki M. S., Toguchida J., Kato M., Nakamura Y., Kawamura S., Moriguchi T., Ikenaga M. Somatic mosaicism for DNA repair capacity in fibroblasts derived from a group A xeroderma pigmentosum patient. J Invest Dermatol. 1989 Oct;93(4):460–465. doi: 10.1111/1523-1747.ep12284030. [DOI] [PubMed] [Google Scholar]
  4. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grenier A., Lescault A., Laberge C., Gagné R., Mamer O. Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia. Clin Chim Acta. 1982 Aug 4;123(1-2):93–99. doi: 10.1016/0009-8981(82)90117-6. [DOI] [PubMed] [Google Scholar]
  6. Hall J. G. Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am J Hum Genet. 1988 Oct;43(4):355–363. [PMC free article] [PubMed] [Google Scholar]
  7. Kvittingen E. A., Jellum E., Stokke O. Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta. 1981 Sep;115(3):311–319. doi: 10.1016/0009-8981(81)90244-8. [DOI] [PubMed] [Google Scholar]
  8. Kvittingen E. A., Rootwelt H., van Dam T., van Faassen H., Berger R. Hereditary tyrosinemia type I: lack of correlation between clinical findings and amount of immunoreactive fumarylacetoacetase protein. Pediatr Res. 1992 Jan;31(1):43–46. doi: 10.1203/00006450-199201000-00008. [DOI] [PubMed] [Google Scholar]
  9. Kvittingen E. A. Tyrosinaemia type I--an update. J Inherit Metab Dis. 1991;14(4):554–562. doi: 10.1007/BF01797926. [DOI] [PubMed] [Google Scholar]
  10. Morley A. A. Mitotic recombination in mammalian cells in vivo. Mutat Res. 1991 Sep-Oct;250(1-2):345–349. doi: 10.1016/0027-5107(91)90191-p. [DOI] [PubMed] [Google Scholar]
  11. Phaneuf D., Labelle Y., Bérubé D., Arden K., Cavenee W., Gagné R., Tanguay R. M. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am J Hum Genet. 1991 Mar;48(3):525–535. [PMC free article] [PubMed] [Google Scholar]
  12. Stoner E., Starkman H., Wellner D., Wellner V. P., Sassa S., Rifkind A. B., Grenier A., Steinherz P. G., Meister A., New M. I. Biochemical studies of a patient with hereditary hepatorenal tyrosinemia: evidence of glutathione deficiency. Pediatr Res. 1984 Dec;18(12):1332–1336. doi: 10.1203/00006450-198412000-00023. [DOI] [PubMed] [Google Scholar]
  13. Tanguay R. M., Valet J. P., Lescault A., Duband J. L., Laberge C., Lettre F., Plante M. Different molecular basis for fumarylacetoacetate hydrolase deficiency in the two clinical forms of hereditary tyrosinemia (type I). Am J Hum Genet. 1990 Aug;47(2):308–316. [PMC free article] [PubMed] [Google Scholar]
  14. Tschudy D. P., Ebert P. S., Hess R. A., Frykholm B. C., Atsmon A. Growth inhibitory activity of succinylacetone: studies with Walker 256 carcinosarcoma, Novikoff hepatoma and L1210 leukemia. Oncology. 1983;40(2):148–154. doi: 10.1159/000225713. [DOI] [PubMed] [Google Scholar]
  15. Weinberg A. G., Mize C. E., Worthen H. G. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr. 1976 Mar;88(3):434–438. doi: 10.1016/s0022-3476(76)80259-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES