Abstract
BACKGROUND. Insulin resistance and glucose intolerance are a major feature of patients with liver cirrhosis. However, site and mechanism of insulin resistance in cirrhosis are unknown. We investigated insulin-induced glucose metabolism of skeletal muscle by positron-emission tomography to identify possible defects of muscle glucose metabolism in these patients. METHODS. Whole body glucose disposal and oxidation were determined by the combined use of the euglycemic-hyperinsulinemic clamp technique (insulin infusion rate: 1 mU/kg body wt per min) and indirect calorimetry in seven patients with biopsy-proven liver cirrhosis (Child: 1A, 5B, and 1C) and five healthy volunteers. Muscle glucose uptake of the thighs was measured simultaneously by dynamic [18F]fluorodeoxyglucose positron-emission tomography scan. RESULTS. Both whole body and nonoxidative glucose disposal were significantly reduced in patients with liver cirrhosis (by 48%, P < 0.001, and 79%, P < 0.0001, respectively), whereas glucose oxidation and the increase in plasma lactate were normal. Concomitantly, skeletal muscle glucose uptake was reduced by 69% in liver cirrhosis (P < 0.003) and explained 55 or 92% of whole body glucose disposal in cirrhotics and controls, respectively. Analysis of kinetic constants using a three-compartment model further indicated reduced glucose transport (P < 0.05) but unchanged phosphorylation of glucose in patients with liver cirrhosis. CONCLUSIONS. Patients with liver cirrhosis show significant insulin resistance that is characterized by both decreased glucose transport and decreased nonoxidative glucose metabolism in skeletal muscle.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron A. D., Laakso M., Brechtel G., Edelman S. V. Mechanism of insulin resistance in insulin-dependent diabetes mellitus: a major role for reduced skeletal muscle blood flow. J Clin Endocrinol Metab. 1991 Sep;73(3):637–643. doi: 10.1210/jcem-73-3-637. [DOI] [PubMed] [Google Scholar]
- Baron A. D., Laakso M., Brechtel G., Hoit B., Watt C., Edelman S. V. Reduced postprandial skeletal muscle blood flow contributes to glucose intolerance in human obesity. J Clin Endocrinol Metab. 1990 Jun;70(6):1525–1533. doi: 10.1210/jcem-70-6-1525. [DOI] [PubMed] [Google Scholar]
- Bogardus C., Lillioja S., Stone K., Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest. 1984 Apr;73(4):1185–1190. doi: 10.1172/JCI111304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavallo-Perin P., Cassader M., Bozzo C., Bruno A., Nuccio P., Dall'Omo A. M., Marucci M., Pagano G. Mechanism of insulin resistance in human liver cirrhosis. Evidence of a combined receptor and postreceptor defect. J Clin Invest. 1985 May;75(5):1659–1665. doi: 10.1172/JCI111873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi Y., Hawkins R. A., Huang S. C., Gambhir S. S., Brunken R. C., Phelps M. E., Schelbert H. R. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med. 1991 Apr;32(4):733–738. [PubMed] [Google Scholar]
- DeFronzo R. A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J. P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981 Dec;30(12):1000–1007. doi: 10.2337/diab.30.12.1000. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
- Heymsfield S. B., McManus C., Smith J., Stevens V., Nixon D. W. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr. 1982 Oct;36(4):680–690. doi: 10.1093/ajcn/36.4.680. [DOI] [PubMed] [Google Scholar]
- Jackson R. A., Roshania R. D., Hawa M. I., Sim B. M., DiSilvio L. Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques. J Clin Endocrinol Metab. 1986 Sep;63(3):541–549. doi: 10.1210/jcem-63-3-541. [DOI] [PubMed] [Google Scholar]
- Jéquier E., Acheson K., Schutz Y. Assessment of energy expenditure and fuel utilization in man. Annu Rev Nutr. 1987;7:187–208. doi: 10.1146/annurev.nu.07.070187.001155. [DOI] [PubMed] [Google Scholar]
- Kelley D., Mitrakou A., Marsh H., Schwenk F., Benn J., Sonnenberg G., Arcangeli M., Aoki T., Sorensen J., Berger M. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988 May;81(5):1563–1571. doi: 10.1172/JCI113489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krivokapich J., Huang S. C., Phelps M. E., Barrio J. R., Watanabe C. R., Selin C. E., Shine K. I. Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. Am J Physiol. 1982 Dec;243(6):H884–H895. doi: 10.1152/ajpheart.1982.243.6.H884. [DOI] [PubMed] [Google Scholar]
- Kruszynska Y., Williams N., Perry M., Home P. The relationship between insulin sensitivity and skeletal muscle enzyme activities in hepatic cirrhosis. Hepatology. 1988 Nov-Dec;8(6):1615–1619. doi: 10.1002/hep.1840080624. [DOI] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844–1852. doi: 10.1172/JCI114644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leatherdale B. A., Chase R. A., Rogers J., Alberti K. G., Davies P., Record C. O. Forearm glucose uptake in cirrhosis and its relationship to glucose tolerance. Clin Sci (Lond) 1980 Sep;59(3):191–198. doi: 10.1042/cs0590191. [DOI] [PubMed] [Google Scholar]
- Lukaski H. C. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987 Oct;46(4):537–556. doi: 10.1093/ajcn/46.4.537. [DOI] [PubMed] [Google Scholar]
- Meyer-Alber A., Hartmann H., Stümpel F., Creutzfeldt W. Mechanism of insulin resistance in CCl4-induced cirrhosis of rats. Gastroenterology. 1992 Jan;102(1):223–229. doi: 10.1016/0016-5085(92)91804-d. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Fenk A., Lautz H. U., Selberg O., Canzler H., Balks H. J., von zur Mühlen A., Schmidt E., Schmidt F. W. Energy expenditure and substrate metabolism in ethanol-induced liver cirrhosis. Am J Physiol. 1991 Mar;260(3 Pt 1):E338–E344. doi: 10.1152/ajpendo.1991.260.3.E338. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Willmann O., Rieger A., Fenk A., Selberg O., Lautz H. U., Bürger M., Balks H. J., von zur Mühlen A., Schmidt F. W. Mechanism of insulin resistance associated with liver cirrhosis. Gastroenterology. 1992 Jun;102(6):2033–2041. doi: 10.1016/0016-5085(92)90329-w. [DOI] [PubMed] [Google Scholar]
- Petrides A. S., DeFronzo R. A. Glucose metabolism in cirrhosis: a review with some perspectives for the future. Diabetes Metab Rev. 1989 Dec;5(8):691–709. doi: 10.1002/dmr.5610050805. [DOI] [PubMed] [Google Scholar]
- Petrides A. S., Groop L. C., Riely C. A., DeFronzo R. A. Effect of physiologic hyperinsulinemia on glucose and lipid metabolism in cirrhosis. J Clin Invest. 1991 Aug;88(2):561–570. doi: 10.1172/JCI115340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proietto J., Alford F. P., Dudley F. J. The mechanism of the carbohydrate intolerance of cirrhosis. J Clin Endocrinol Metab. 1980 Nov;51(5):1030–1036. doi: 10.1210/jcem-51-5-1030. [DOI] [PubMed] [Google Scholar]
- Pugh R. N., Murray-Lyon I. M., Dawson J. L., Pietroni M. C., Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973 Aug;60(8):646–649. doi: 10.1002/bjs.1800600817. [DOI] [PubMed] [Google Scholar]
- Rowe J. W., Minaker K. L., Pallotta J. A., Flier J. S. Characterization of the insulin resistance of aging. J Clin Invest. 1983 Jun;71(6):1581–1587. doi: 10.1172/JCI110914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shulman G. I., Rothman D. L., Jue T., Stein P., DeFronzo R. A., Shulman R. G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. doi: 10.1056/NEJM199001253220403. [DOI] [PubMed] [Google Scholar]
- Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
- Tappy L., Owen O. E., Boden G. Effect of hyperinsulinemia on urea pool size and substrate oxidation rates. Diabetes. 1988 Sep;37(9):1212–1216. doi: 10.2337/diab.37.9.1212. [DOI] [PubMed] [Google Scholar]
- Taylor R., Johnston D. G., Alberti K. G. Glucose homoeostasis in chronic liver disease. Clin Sci (Lond) 1986 Apr;70(4):317–320. doi: 10.1042/cs0700317. [DOI] [PubMed] [Google Scholar]