Abstract
The membrane attack complex of complement (MAC) can induce reversible changes in cell membrane permeability resulting in significant but transient intracellular ionic changes in the absence of cell lysis. Because ion fluxes and cytosolic ionic changes are integral steps in the signaling cascade initiated when growth factors bind to their receptors, we hypothesized that the MAC-induced reversible changes in membrane permeability could stimulate cell proliferation. Using purified terminal complement components we have documented a mitogenic effect of the MAC for quiescent murine 3T3 cells. The MAC enhances the mitogenic effects of serum and PDGF, and also stimulates cell proliferation in the absence of other exogenous growth factors. MAC-induced mitogenesis represents a novel effect of the terminal complement complex that could contribute to focal tissue repair or pathological cell proliferation locally at sites of complement activation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambrus J. L., Jr, Chesky L., Chused T., Young K. R., Jr, McFarland P., August A., Brown E. J. Intracellular signaling events associated with the induction of proliferation of normal human B lymphocytes by two different antigenically related human B cell growth factors (high molecular weight B cell growth factor (HMW-BCGF) and the complement factor Bb). J Biol Chem. 1991 Feb 25;266(6):3702–3708. [PubMed] [Google Scholar]
- Auda G., Holme E. R., Davidson J. E., Zoma A., Veitch J., Whaley K. Measurement of complement activation products in patients with chronic rheumatic diseases. Rheumatol Int. 1990;10(5):185–189. doi: 10.1007/BF02274831. [DOI] [PubMed] [Google Scholar]
- Borzak S., Kelly R. A., Krämer B. K., Matoba Y., Marsh J. D., Reers M. In situ calibration of fura-2 and BCECF fluorescence in adult rat ventricular myocytes. Am J Physiol. 1990 Sep;259(3 Pt 2):H973–H981. doi: 10.1152/ajpheart.1990.259.3.H973. [DOI] [PubMed] [Google Scholar]
- Campbell A. K., Morgan B. P. Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack. Nature. 1985 Sep 12;317(6033):164–166. doi: 10.1038/317164a0. [DOI] [PubMed] [Google Scholar]
- Carney D. F., Lang T. J., Shin M. L. Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol. 1990 Jul 15;145(2):623–629. [PubMed] [Google Scholar]
- Cybulsky A. V., Bonventre J. V., Quigg R. J., Lieberthal W., Salant D. J. Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury. Kidney Int. 1990 Nov;38(5):803–811. doi: 10.1038/ki.1990.274. [DOI] [PubMed] [Google Scholar]
- DiScipio R. G., Smith C. A., Muller-Eberhard H. J., Hugli T. E. The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem. 1983 Sep 10;258(17):10629–10636. [PubMed] [Google Scholar]
- Fishelson Z., Müller-Eberhard H. J. C3 convertase of human complement: enhanced formation and stability of the enzyme generated with nickel instead of magnesium. J Immunol. 1982 Dec;129(6):2603–2607. [PubMed] [Google Scholar]
- GREEN H., BARROW P., GOLDBERG B. Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J Exp Med. 1959 Nov 1;110:699–713. doi: 10.1084/jem.110.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Halperin J. A., Brugnara C., Nicholson-Weller A. Ca2+-activated K+ efflux limits complement-mediated lysis of human erythrocytes. J Clin Invest. 1989 May;83(5):1466–1471. doi: 10.1172/JCI114039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halperin J. A., Nicholson-Weller A., Brugnara C., Tosteson D. C. Complement induces a transient increase in membrane permeability in unlysed erythrocytes. J Clin Invest. 1988 Aug;82(2):594–600. doi: 10.1172/JCI113637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattori R., Hamilton K. K., McEver R. P., Sims P. J. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem. 1989 May 25;264(15):9053–9060. [PubMed] [Google Scholar]
- Hivroz C., Fischer E., Kazatchkine M. D., Grillot-Courvalin C. Differential effects of the stimulation of complement receptors CR1 (CD35) and CR2 (CD21) on cell proliferation and intracellular Ca2+ mobilization of chronic lymphocytic leukemia B cells. J Immunol. 1991 Mar 15;146(6):1766–1772. [PubMed] [Google Scholar]
- Hänsch G. M., Gemsa D., Resch K. Induction of prostanoid synthesis in human platelets by the late complement components C5b-9 and channel forming antibiotic nystatin: inhibition of the reacylation of liberated arachidonic acid. J Immunol. 1985 Aug;135(2):1320–1324. [PubMed] [Google Scholar]
- Iida K., Whitlow M. B., Nussenzweig V. Membrane vesiculation protects erythrocytes from destruction by complement. J Immunol. 1991 Oct 15;147(8):2638–2642. [PubMed] [Google Scholar]
- Michaels D. W., Abramovitz A. S., Hammer C. H., Mayer M. M. Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2852–2856. doi: 10.1073/pnas.73.8.2852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moolenaar W. H., Tsien R. Y., van der Saag P. T., de Laat S. W. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature. 1983 Aug 18;304(5927):645–648. doi: 10.1038/304645a0. [DOI] [PubMed] [Google Scholar]
- Morgan B. P. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J. 1989 Nov 15;264(1):1–14. doi: 10.1042/bj2640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niculescu F., Hugo F., Rus H. G., Vlaicu R., Bhakdi S. Quantitative evaluation of the terminal C5b-9 complement complex by ELISA in human atherosclerotic arteries. Clin Exp Immunol. 1987 Aug;69(2):477–483. [PMC free article] [PubMed] [Google Scholar]
- Rauterberg E. W., Lieberknecht H. M., Wingen A. M., Ritz E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int. 1987 Mar;31(3):820–829. doi: 10.1038/ki.1987.72. [DOI] [PubMed] [Google Scholar]
- Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. doi: 10.1126/science.3018928. [DOI] [PubMed] [Google Scholar]
- Rozengurt E., Gelehrter T. D., Legg A., Pettican P. Melittin stimulates Na entry, Na-K pump activity and DNA synthesis in quiescent cultures of mouse cells. Cell. 1981 Mar;23(3):781–788. doi: 10.1016/0092-8674(81)90442-6. [DOI] [PubMed] [Google Scholar]
- Shirazi Y., McMorris F. A., Shin M. L. Arachidonic acid mobilization and phosphoinositide turnover by the terminal complement complex, C5b-9, in rat oligodendrocyte x C6 glioma cell hybrids. J Immunol. 1989 Jun 15;142(12):4385–4391. [PubMed] [Google Scholar]
- Soltoff S. P., Cantley L. C. Mitogens and ion fluxes. Annu Rev Physiol. 1988;50:207–223. doi: 10.1146/annurev.ph.50.030188.001231. [DOI] [PubMed] [Google Scholar]
- Stewart J. L., Monahan J. B., Brickner A., Sodetz J. M. Measurement of the ratio of the eighth and ninth components of human complement on complement-lysed membranes. Biochemistry. 1984 Aug 28;23(18):4016–4022. doi: 10.1021/bi00313a002. [DOI] [PubMed] [Google Scholar]
- Wiedmer T., Ando B., Sims P. J. Complement C5b-9-stimulated platelet secretion is associated with a Ca2+-initiated activation of cellular protein kinases. J Biol Chem. 1987 Oct 5;262(28):13674–13681. [PubMed] [Google Scholar]
