Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Sep;92(3):1213–1220. doi: 10.1172/JCI116692

Point mutation in a leucine-rich repeat of platelet glycoprotein Ib alpha resulting in the Bernard-Soulier syndrome.

J Ware 1, S R Russell 1, P Marchese 1, M Murata 1, M Mazzucato 1, L De Marco 1, Z M Ruggeri 1
PMCID: PMC288260  PMID: 7690774

Abstract

Leucine-rich repeats are a conserved structural motif, of yet undefined significance, found in a group of proteins from different species. Among these are the four components of the human platelet glycoprotein Ib-IX-V complex, a membrane receptor that performs an essential role in the thrombogenic function of platelets by interacting with the adhesive protein, von Willebrand factor. We have found that a single amino acid substitution (Ala156-->Val) within one of the six leucine-rich repeats in the alpha-subunit of glycoprotein Ib results in a variant form of the congenital bleeding disorder, Bernard-Soulier syndrome, characterized by giant dysfunctional platelets. Genetic studies of the propositus and his family members were complemented by immunological and functional analysis of expressed recombinant GP Ib alpha fragments to demonstrate that the observed mutation is the cause of defective von Willebrand factor binding. These studies define the molecular basis of the Bernard-Soulier syndrome within this family and demonstrate that structural integrity of a leucine-rich repeat is necessary for normal function of the glycoprotein Ib-IX-V receptor complex and, possibly, for normal platelet morphology.

Full text

PDF
1213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berndt M. C., Gregory C., Chong B. H., Zola H., Castaldi P. A. Additional glycoprotein defects in Bernard-Soulier's syndrome: confirmation of genetic basis by parental analysis. Blood. 1983 Oct;62(4):800–807. [PubMed] [Google Scholar]
  2. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caen J. P., Nurden A. T., Jeanneau C., Michel H., Tobelem G., Levy-Toledano S., Sultan Y., Valensi F., Bernard J. Bernard-Soulier syndrome: a new platelet glycoprotein abnormality. Its relationship with platelet adhesion to subendothelium and with the factor VIII von Willebrand protein. J Lab Clin Med. 1976 Apr;87(4):586–596. [PubMed] [Google Scholar]
  4. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Marco L., Fabris F., Casonato A., Fabris P., Dal Ben M. G., Barbato A., Girolami A. Bernard-Soulier syndrome: diagnosis by an ELISA method using monoclonal antibodies in 2 new unrelated patients. Acta Haematol. 1986;75(4):203–208. doi: 10.1159/000206125. [DOI] [PubMed] [Google Scholar]
  6. De Marco L., Mazzucato M., Fabris F., De Roia D., Coser P., Girolami A., Vicente V., Ruggeri Z. M. Variant Bernard-Soulier syndrome type bolzano. A congenital bleeding disorder due to a structural and functional abnormality of the platelet glycoprotein Ib-IX complex. J Clin Invest. 1990 Jul;86(1):25–31. doi: 10.1172/JCI114692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox J. E. Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of one of the glycoproteins as glycoprotein Ib. J Clin Invest. 1985 Oct;76(4):1673–1683. doi: 10.1172/JCI112153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujimura Y., Titani K., Usami Y., Suzuki M., Oyama R., Matsui T., Fukui H., Sugimoto M., Ruggeri Z. M. Isolation and chemical characterization of two structurally and functionally distinct forms of botrocetin, the platelet coagglutinin isolated from the venom of Bothrops jararaca. Biochemistry. 1991 Feb 19;30(7):1957–1964. doi: 10.1021/bi00221a032. [DOI] [PubMed] [Google Scholar]
  9. Handa M., Titani K., Holland L. Z., Roberts J. R., Ruggeri Z. M. The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. J Biol Chem. 1986 Sep 25;261(27):12579–12585. [PubMed] [Google Scholar]
  10. Hashimoto C., Hudson K. L., Anderson K. V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988 Jan 29;52(2):269–279. doi: 10.1016/0092-8674(88)90516-8. [DOI] [PubMed] [Google Scholar]
  11. Hickey M. J., Williams S. A., Roth G. J. Human platelet glycoprotein IX: an adhesive prototype of leucine-rich glycoproteins with flank-center-flank structures. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6773–6777. doi: 10.1073/pnas.86.17.6773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kishimoto T. K., Hollander N., Roberts T. M., Anderson D. C., Springer T. A. Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell. 1987 Jul 17;50(2):193–202. doi: 10.1016/0092-8674(87)90215-7. [DOI] [PubMed] [Google Scholar]
  13. Kuijpers R. W., Faber N. M., Cuypers H. T., Ouwehand W. H., von dem Borne A. E. NH2-terminal globular domain of human platelet glycoprotein Ib alpha has a methionine 145/threonine145 amino acid polymorphism, which is associated with the HPA-2 (Ko) alloantigens. J Clin Invest. 1992 Feb;89(2):381–384. doi: 10.1172/JCI115596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  15. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  16. Lopez J. A., Chung D. W., Fujikawa K., Hagen F. S., Davie E. W., Roth G. J. The alpha and beta chains of human platelet glycoprotein Ib are both transmembrane proteins containing a leucine-rich amino acid sequence. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2135–2139. doi: 10.1073/pnas.85.7.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopez J. A., Chung D. W., Fujikawa K., Hagen F. S., Papayannopoulou T., Roth G. J. Cloning of the alpha chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich alpha 2-glycoprotein. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5615–5619. doi: 10.1073/pnas.84.16.5615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. López J. A., Leung B., Reynolds C. C., Li C. Q., Fox J. E. Efficient plasma membrane expression of a functional platelet glycoprotein Ib-IX complex requires the presence of its three subunits. J Biol Chem. 1992 Jun 25;267(18):12851–12859. [PubMed] [Google Scholar]
  19. López J. A., Ludwig E. H., McCarthy B. J. Polymorphism of human glycoprotein Ib alpha results from a variable number of tandem repeats of a 13-amino acid sequence in the mucin-like macroglycopeptide region. Structure/function implications. J Biol Chem. 1992 May 15;267(14):10055–10061. [PubMed] [Google Scholar]
  20. Modderman P. W., Admiraal L. G., Sonnenberg A., von dem Borne A. E. Glycoproteins V and Ib-IX form a noncovalent complex in the platelet membrane. J Biol Chem. 1992 Jan 5;267(1):364–369. [PubMed] [Google Scholar]
  21. Murata M., Furihata K., Ishida F., Russell S. R., Ware J., Ruggeri Z. M. Genetic and structural characterization of an amino acid dimorphism in glycoprotein Ib alpha involved in platelet transfusion refractoriness. Blood. 1992 Jun 1;79(11):3086–3090. [PubMed] [Google Scholar]
  22. Murata M., Ware J., Ruggeri Z. M. Site-directed mutagenesis of a soluble recombinant fragment of platelet glycoprotein Ib alpha demonstrating negatively charged residues involved in von Willebrand factor binding. J Biol Chem. 1991 Aug 15;266(23):15474–15480. [PubMed] [Google Scholar]
  23. Nurden A. T., Caen J. P. Specific roles for platelet surface glycoproteins in platelet function. Nature. 1975 Jun 26;255(5511):720–722. doi: 10.1038/255720a0. [DOI] [PubMed] [Google Scholar]
  24. O'Toole T. E., Loftus J. C., Plow E. F., Glass A. A., Harper J. R., Ginsberg M. H. Efficient surface expression of platelet GPIIb-IIIa requires both subunits. Blood. 1989 Jul;74(1):14–18. [PubMed] [Google Scholar]
  25. Rabinowitz I., Tuley E. A., Mancuso D. J., Randi A. M., Firkin B. G., Howard M. A., Sadler J. E. von Willebrand disease type B: a missense mutation selectively abolishes ristocetin-induced von Willebrand factor binding to platelet glycoprotein Ib. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9846–9849. doi: 10.1073/pnas.89.20.9846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reinke R., Krantz D. E., Yen D., Zipursky S. L. Chaoptin, a cell surface glycoprotein required for Drosophila photoreceptor cell morphogenesis, contains a repeat motif found in yeast and human. Cell. 1988 Jan 29;52(2):291–301. doi: 10.1016/0092-8674(88)90518-1. [DOI] [PubMed] [Google Scholar]
  27. Roth G. J. Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood. 1991 Jan 1;77(1):5–19. [PubMed] [Google Scholar]
  28. Ruggeri Z. M., Ware J. The structure and function of von Willebrand factor. Thromb Haemost. 1992 Jun 1;67(6):594–599. [PubMed] [Google Scholar]
  29. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  30. Scott J. P., Montgomery R. R., Retzinger G. S. Dimeric ristocetin flocculates proteins, binds to platelets, and mediates von Willebrand factor-dependent agglutination of platelets. J Biol Chem. 1991 May 5;266(13):8149–8155. [PubMed] [Google Scholar]
  31. Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. 1987 Oct 29-Nov 4Nature. 329(6142):840–842. doi: 10.1038/329840a0. [DOI] [PubMed] [Google Scholar]
  32. Shimomura T., Fujimura K., Maehama S., Takemoto M., Oda K., Fujimoto T., Oyama R., Suzuki M., Ichihara-Tanaka K., Titani K. Rapid purification and characterization of human platelet glycoprotein V: the amino acid sequence contains leucine-rich repetitive modules as in glycoprotein Ib. Blood. 1990 Jun 15;75(12):2349–2356. [PubMed] [Google Scholar]
  33. Sugimoto M., Mohri H., McClintock R. A., Ruggeri Z. M. Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin. A model for the regulation of von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem. 1991 Sep 25;266(27):18172–18178. [PubMed] [Google Scholar]
  34. Takahashi N., Takahashi Y., Putnam F. W. Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1906–1910. doi: 10.1073/pnas.82.7.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tan F., Weerasinghe D. K., Skidgel R. A., Tamei H., Kaul R. K., Roninson I. B., Schilling J. W., Erdös E. G. The deduced protein sequence of the human carboxypeptidase N high molecular weight subunit reveals the presence of leucine-rich tandem repeats. J Biol Chem. 1990 Jan 5;265(1):13–19. [PubMed] [Google Scholar]
  36. Titani K., Takio K., Handa M., Ruggeri Z. M. Amino acid sequence of the von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5610–5614. doi: 10.1073/pnas.84.16.5610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vicente V., Houghten R. A., Ruggeri Z. M. Identification of a site in the alpha chain of platelet glycoprotein Ib that participates in von Willebrand factor binding. J Biol Chem. 1990 Jan 5;265(1):274–280. [PubMed] [Google Scholar]
  38. Vicente V., Kostel P. J., Ruggeri Z. M. Isolation and functional characterization of the von Willebrand factor-binding domain located between residues His1-Arg293 of the alpha-chain of glycoprotein Ib. J Biol Chem. 1988 Dec 5;263(34):18473–18479. [PubMed] [Google Scholar]
  39. Ware J., Russell S. R., Vicente V., Scharf R. E., Tomer A., McMillan R., Ruggeri Z. M. Nonsense mutation in the glycoprotein Ib alpha coding sequence associated with Bernard-Soulier syndrome. Proc Natl Acad Sci U S A. 1990 Mar;87(5):2026–2030. doi: 10.1073/pnas.87.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wenger R. H., Kieffer N., Wicki A. N., Clemetson K. J. Structure of the human blood platelet membrane glycoprotein Ib alpha gene. Biochem Biophys Res Commun. 1988 Oct 14;156(1):389–395. doi: 10.1016/s0006-291x(88)80853-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES