Abstract
The mechanism of Cl- exit was examined in the basolateral membrane of rabbit renal proximal tubule S3 segment with double-barreled, ion-selective microelectrodes. After the basolateral Cl-/HCO3- exchanger was blocked by 2'-disulfonic acid, a bath K+ step from 5 to 20 mM induced 26.6 mV depolarization and 7.7 mM increase in intracellular Cl- activities ([Cl(-)]i). K+ channel blockers, Ba2+, and quinine strongly suppressed both the response in cell membrane potentials (Vb) and in (Cl-)i to the bath K+ step, while Cl- channel blockers, A9C (1 mM) and IAA-94 (0.3 mM) inhibited only the latter response by 49 and 74%, respectively. By contrast, an inhibitor of K(+)-Cl- cotransporter, H74, had no effect on the increase in (Cl-)i to the bath K+ step. Furosemide and the removal of bath Na+ were also ineffective, suggesting that (Cl-)i are sensitive to the cell potential changes. Bath Cl- removal in the presence of quinine induced a depolarization of more than 10 mV and a decrease in (Cl-)i, and IAA-94 inhibited these responses similarly in the bath K+ step experiments. These results indicate that a significant Cl- conductance exists in the basolateral membrane of this segment and functions as a Cl- exit mechanism.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpern R. J. Cell mechanisms of proximal tubule acidification. Physiol Rev. 1990 Jan;70(1):79–114. doi: 10.1152/physrev.1990.70.1.79. [DOI] [PubMed] [Google Scholar]
- Alpern R. J., Howlin K. J., Preisig P. A. Active and passive components of chloride transport in the rat proximal convoluted tubule. J Clin Invest. 1985 Oct;76(4):1360–1366. doi: 10.1172/JCI112111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson M. P., Welsh M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003–6007. doi: 10.1073/pnas.88.14.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baum M., Berry C. A. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule. J Clin Invest. 1984 Jul;74(1):205–211. doi: 10.1172/JCI111403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bello-Reuss E. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J Physiol. 1982 May;326:49–63. doi: 10.1113/jphysiol.1982.sp014176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bokvist K., Rorsman P., Smith P. A. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine. J Physiol. 1990 Apr;423:327–342. doi: 10.1113/jphysiol.1990.sp018025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burckhardt B. C., Sato K., Frömter E. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflugers Arch. 1984 May;401(1):34–42. doi: 10.1007/BF00581530. [DOI] [PubMed] [Google Scholar]
- Cliff W. H., Frizzell R. A. Separate Cl- conductances activated by cAMP and Ca2+ in Cl(-)-secreting epithelial cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4956–4960. doi: 10.1073/pnas.87.13.4956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellory J. C., Hall A. C., Ody S. O., Englert H. C., Mania D., Lang H. J. Selective inhibitors of KCl cotransport in human red cells. FEBS Lett. 1990 Mar 26;262(2):215–218. doi: 10.1016/0014-5793(90)80193-m. [DOI] [PubMed] [Google Scholar]
- Filipovic D., Sackin H. Stretch- and volume-activated channels in isolated proximal tubule cells. Am J Physiol. 1992 May;262(5 Pt 2):F857–F870. doi: 10.1152/ajprenal.1992.262.5.F857. [DOI] [PubMed] [Google Scholar]
- Fischer H., Kreusel K. M., Illek B., Machen T. E., Hegel U., Clauss W. The outwardly rectifying Cl- channel is not involved in cAMP-mediated Cl- secretion in HT-29 cells: evidence for a very-low-conductance Cl- channel. Pflugers Arch. 1992 Nov;422(2):159–167. doi: 10.1007/BF00370415. [DOI] [PubMed] [Google Scholar]
- Grassl S. M., Holohan P. D., Ross C. R. Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles. Biochim Biophys Acta. 1987 Dec 11;905(2):475–484. doi: 10.1016/0005-2736(87)90477-9. [DOI] [PubMed] [Google Scholar]
- Greger R., Schlatter E. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 1983 Mar;396(4):325–334. doi: 10.1007/BF01063938. [DOI] [PubMed] [Google Scholar]
- Guggino W. B., Boulpaep E. L., Giebisch G. Electrical properties of chloride transport across the necturus proximal tubule. J Membr Biol. 1982;65(3):185–196. doi: 10.1007/BF01869962. [DOI] [PubMed] [Google Scholar]
- Hazama A., Okada Y. Ca2+ sensitivity of volume-regulatory K+ and Cl- channels in cultured human epithelial cells. J Physiol. 1988 Aug;402:687–702. doi: 10.1113/jphysiol.1988.sp017229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iijima K., Lin L., Nasjletti A., Goligorsky M. S. Intracellular ramification of endothelin signal. Am J Physiol. 1991 May;260(5 Pt 1):C982–C992. doi: 10.1152/ajpcell.1991.260.5.C982. [DOI] [PubMed] [Google Scholar]
- Ishibashi K., Rector F. C., Jr, Berry C. A. Chloride transport across the basolateral membrane of rabbit proximal convoluted tubules. Am J Physiol. 1990 Jun;258(6 Pt 2):F1569–F1578. doi: 10.1152/ajprenal.1990.258.6.F1569. [DOI] [PubMed] [Google Scholar]
- Kawahara K., Hunter M., Giebisch G. Potassium channels in Necturus proximal tubule. Am J Physiol. 1987 Sep;253(3 Pt 2):F488–F494. doi: 10.1152/ajprenal.1987.253.3.F488. [DOI] [PubMed] [Google Scholar]
- Kondo Y., Bührer T., Seiler K., Frömter E., Simon W. A new double-barrelled, ionophore-based microelectrode for chloride ions. Pflugers Arch. 1989 Sep;414(6):663–668. doi: 10.1007/BF00582133. [DOI] [PubMed] [Google Scholar]
- Kondo Y., Frömter E. Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney. Pflugers Arch. 1987 Nov;410(4-5):481–486. doi: 10.1007/BF00586529. [DOI] [PubMed] [Google Scholar]
- Kondo Y., Frömter E. Evidence of chloride/bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflugers Arch. 1990 Mar;415(6):726–733. doi: 10.1007/BF02584012. [DOI] [PubMed] [Google Scholar]
- Kubitz R., Warth R., Allert N., Kunzelmann K., Greger R. Small-conductance chloride channels induced by cAMP, Ca2+, and hypotonicity in HT29 cells: ion selectivity, additivity and stilbene sensitivity. Pflugers Arch. 1992 Aug;421(5):447–454. doi: 10.1007/BF00370255. [DOI] [PubMed] [Google Scholar]
- Landry D. W., Akabas M. H., Redhead C., Edelman A., Cragoe E. J., Jr, Al-Awqati Q. Purification and reconstitution of chloride channels from kidney and trachea. Science. 1989 Jun 23;244(4911):1469–1472. doi: 10.1126/science.2472007. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. K+:Cl- cotransport: sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell. J Membr Biol. 1985;88(1):1–13. doi: 10.1007/BF01871208. [DOI] [PubMed] [Google Scholar]
- Lipkowitz M. S., Abramson R. G. Modulation of the ionic permeability of renal cortical brush-border membranes by cAMP. Am J Physiol. 1989 Nov;257(5 Pt 2):F769–F776. doi: 10.1152/ajprenal.1989.257.5.F769. [DOI] [PubMed] [Google Scholar]
- Rector F. C., Jr Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol. 1983 May;244(5):F461–F471. doi: 10.1152/ajprenal.1983.244.5.F461. [DOI] [PubMed] [Google Scholar]
- Sasaki S., Ishibashi K., Yoshiyama N., Shiigai T. KCl co-transport across the basolateral membrane of rabbit renal proximal straight tubules. J Clin Invest. 1988 Jan;81(1):194–199. doi: 10.1172/JCI113294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki S., Yoshiyama N. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange. J Clin Invest. 1988 Apr;81(4):1004–1011. doi: 10.1172/JCI113410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schild L., Aronson P. S., Giebisch G. Basolateral transport pathways for K+ and Cl- in rabbit proximal tubule: effects on cell volume. Am J Physiol. 1991 Jan;260(1 Pt 2):F101–F109. doi: 10.1152/ajprenal.1991.260.1.F101. [DOI] [PubMed] [Google Scholar]
- Seki G., Frömter E. Acetazolamide inhibition of basolateral base exit in rabbit renal proximal tubule S2 segment. Pflugers Arch. 1992 Oct;422(1):60–65. doi: 10.1007/BF00381514. [DOI] [PubMed] [Google Scholar]
- Seki G., Frömter E. The chloride/base exchanger in the basolateral cell membrane of rabbit renal proximal tubule S3 segment requires bicarbonate to operate. Pflugers Arch. 1990 Sep;417(1):37–41. doi: 10.1007/BF00370766. [DOI] [PubMed] [Google Scholar]
- Seki G., Taniguchi S., Uwatoko S., Suzuki K., Kurokawa K. Effect of parathyroid hormone on acid/base transport in rabbit renal proximal tubule S3 segment. Pflugers Arch. 1993 Apr;423(1-2):7–13. doi: 10.1007/BF00374954. [DOI] [PubMed] [Google Scholar]
- Shindo T., Spring K. R. Chloride movement across the basolateral membrane of proximal tubule cells. J Membr Biol. 1981 Jan 30;58(1):35–42. doi: 10.1007/BF01871032. [DOI] [PubMed] [Google Scholar]
- Suzuki M., Morita T., Hanaoka K., Kawaguchi Y., Sakai O. A Cl- channel activated by parathyroid hormone in rabbit renal proximal tubule cells. J Clin Invest. 1991 Sep;88(3):735–742. doi: 10.1172/JCI115370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welling P. A., O'Neil R. G. Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule. Am J Physiol. 1990 Apr;258(4 Pt 2):F951–F962. doi: 10.1152/ajprenal.1990.258.4.F951. [DOI] [PubMed] [Google Scholar]
- Yoshitomi K., Burckhardt B. C., Frömter E. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch. 1985 Dec;405(4):360–366. doi: 10.1007/BF00595689. [DOI] [PubMed] [Google Scholar]
