Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Sep;92(3):1253–1261. doi: 10.1172/JCI116697

Intravenous infusion of tridocosahexaenoyl-glycerol emulsion into rabbits. Effects on leukotriene B4/5 production and fatty acid composition of plasma and leukocytes.

N Nakamura 1, T Hamazaki 1, K Yamazaki 1, H Taki 1, M Kobayashi 1, K Yazawa 1, F Ibuki 1
PMCID: PMC288265  PMID: 8397222

Abstract

Leukotriene (LT) B4 is a major chemical activator of PMN. Inhibitory effects of oral administration of docosahexaenoic acid (DHA) on LTB4 synthesis by PMN are known. We intravenously infused tridocosahexaenoyl-glycerol (DHA-TG) emulsion into rabbits in three different doses, namely 0.8, 0.4, or 0.2 g DHA/kg, and investigated the changes in LTB4/5 production by ionophore-activated PMN. The averaged LTB4 production by PMN was significantly reduced to 57 and 59% of baseline at 6 h after the infusion of 0.8 and 0.4 g DHA/kg, respectively (P < 0.05), but not after the infusion of 0.2 g DHA/kg or 0.8 g soybean oil/kg. The combined concentrations of both DHA and eicosapentaenoic acid in the PMN phospholipid fraction were significantly increased at 6 h after the infusion of 0.8 or 0.4 g DHA/kg but not after the infusion of 0.2 g DHA/kg or 0.8 g soybean oil/kg. Oral administration of 0.8 g DHA/kg did not increase DHA or eicosapentaenoic acid in the PMN phospholipid fraction and did not decrease LTB4 production by PMN at 6 h after administration. We suggest that the infusion of 0.4-0.8 g DHA/kg might be beneficial to patients who suffer from diseases that are related to the acute elevation of LTB4 production.

Full text

PDF
1253

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgeat P., Samuelsson B. Metabolism of arachidonic acid in polymorphonuclear leukocytes. Structural analysis of novel hydroxylated compounds. J Biol Chem. 1979 Aug 25;254(16):7865–7869. [PubMed] [Google Scholar]
  2. Cooper D. R., Kelliher G. J., Kowey P. R. Modulation of arachidonic acid metabolites and vulnerability to ventricular fibrillation during myocardial ischemia in the cat. Am Heart J. 1988 Nov;116(5 Pt 1):1194–1200. doi: 10.1016/0002-8703(88)90439-5. [DOI] [PubMed] [Google Scholar]
  3. Corey E. J., Shih C., Cashman J. R. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3581–3584. doi: 10.1073/pnas.80.12.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Diczfalusy U., Hamberg M. Identification of the major urinary metabolite of prostaglandin E3 in the rat. Biochim Biophys Acta. 1986 Oct 3;878(3):387–393. doi: 10.1016/0005-2760(86)90247-x. [DOI] [PubMed] [Google Scholar]
  5. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  6. Fischer S., Vischer A., Preac-Mursic V., Weber P. C. Dietary docosahexaenoic acid is retroconverted in man to eicosapentaenoic acid, which can be quickly transformed to prostaglandin I3. Prostaglandins. 1987 Sep;34(3):367–375. doi: 10.1016/0090-6980(87)90082-7. [DOI] [PubMed] [Google Scholar]
  7. Guffy M. M., North J. A., Burns C. P. Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 1984 May;44(5):1863–1866. [PubMed] [Google Scholar]
  8. Guffy M. M., Rosenberger J. A., Simon I., Burns C. P. Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 1982 Sep;42(9):3625–3630. [PubMed] [Google Scholar]
  9. Hamazaki T., Hirai A., Terano T., Sajiki J., Kondo S., Fujita T., Tamura Y., Kumagai A. Effects of orally administered ethyl ester of eicosapentaenoic acid (EPA; C20:5, omega-3) on PGI2-like substance production by rat aorta. Prostaglandins. 1982 Apr;23(4):557–567. doi: 10.1016/0090-6980(82)90116-2. [DOI] [PubMed] [Google Scholar]
  10. Hamazaki T., Urakaze M., Yano S., Soda Y., Miyamoto A., Kubota K., Ibuki F. Injection of tridocosahexaenoyl-glycerol emulsion and fatty acid composition of blood cells. Lipids. 1987 Dec;22(12):1031–1034. doi: 10.1007/BF02536445. [DOI] [PubMed] [Google Scholar]
  11. Hirai A., Terano T., Hamazaki T., Sajiki J., Kondo S., Ozawa A., Fujita T., Miyamoto T., Tamura Y., Kumagai A. The effects of the oral administration of fish oil concentrate on the release and the metabolism of [14C]arachidonic acid and [14C]eicosapentaenoic acid by human platelets. Thromb Res. 1982 Nov 1;28(3):285–298. doi: 10.1016/0049-3848(82)90112-8. [DOI] [PubMed] [Google Scholar]
  12. Kinsella J. E., Lokesh B., Stone R. A. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: possible mechanisms. Am J Clin Nutr. 1990 Jul;52(1):1–28. doi: 10.1093/ajcn/52.1.1. [DOI] [PubMed] [Google Scholar]
  13. Kuzuya T., Hoshida S., Suzuki K., Sasaki T., Kitabatake A., Kamada T., Minamino T., Tada M. Polymorphonuclear leukocyte activity and ventricular arrhythmia in acute myocardial infarction. Am J Cardiol. 1988 Nov 1;62(13):868–872. doi: 10.1016/0002-9149(88)90883-1. [DOI] [PubMed] [Google Scholar]
  14. Lee T. H., Mencia-Huerta J. M., Shih C., Corey E. J., Lewis R. A., Austen K. F. Effects of exogenous arachidonic, eicosapentaenoic, and docosahexaenoic acids on the generation of 5-lipoxygenase pathway products by ionophore-activated human neutrophils. J Clin Invest. 1984 Dec;74(6):1922–1933. doi: 10.1172/JCI111612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leslie C. A., Gonnerman W. A., Ullman M. D., Hayes K. C., Franzblau C., Cathcart E. S. Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice. J Exp Med. 1985 Oct 1;162(4):1336–1349. doi: 10.1084/jem.162.4.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lokesh B. R., Black J. M., German J. B., Kinsella J. E. Docosahexaenoic acid and other dietary polyunsaturated fatty acids suppress leukotriene synthesis by mouse peritoneal macrophages. Lipids. 1988 Oct;23(10):968–972. doi: 10.1007/BF02536345. [DOI] [PubMed] [Google Scholar]
  17. Lokesh B. R., German B., Kinsella J. E. Differential effects of docosahexaenoic acid and eicosapentaenoic acid on suppression of lipoxygenase pathway in peritoneal macrophages. Biochim Biophys Acta. 1988 Jan 19;958(1):99–107. doi: 10.1016/0005-2760(88)90250-0. [DOI] [PubMed] [Google Scholar]
  18. McLennan P. L., Abeywardena M. Y., Charnock J. S. Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. Am Heart J. 1988 Sep;116(3):709–717. doi: 10.1016/0002-8703(88)90328-6. [DOI] [PubMed] [Google Scholar]
  19. Mullane K. M., Salmon J. A., Kraemer R. Leukocyte-derived metabolites of arachidonic acid in ischemia-induced myocardial injury. Fed Proc. 1987 May 15;46(7):2422–2433. [PubMed] [Google Scholar]
  20. Nathaniel D. J., Evans J. F., Leblanc Y., Léveillé C., Fitzsimmons B. J., Ford-Hutchinson A. W. Leukotriene A5 is a substrate and an inhibitor of rat and human neutrophil LTA4 hydrolase. Biochem Biophys Res Commun. 1985 Sep 16;131(2):827–835. doi: 10.1016/0006-291x(85)91314-2. [DOI] [PubMed] [Google Scholar]
  21. Neuringer M., Connor W. E., Van Petten C., Barstad L. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest. 1984 Jan;73(1):272–276. doi: 10.1172/JCI111202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  23. Schlenk H., Sand D. M., Gellerman J. L. Retroconversion of docosahexaenoic acid in the rat. Biochim Biophys Acta. 1969;187(2):201–207. doi: 10.1016/0005-2760(69)90028-9. [DOI] [PubMed] [Google Scholar]
  24. Stjernschantz J. The leukotrienes. Med Biol. 1984;62(4):215–230. [PubMed] [Google Scholar]
  25. Taki H., Morinaga S., Yamazaki K., Hamazaki T., Suzuki H., Nakamura N. Reduction of delayed-type hypersensitivity by the injection of n-3 polyunsaturated fatty acids in mice. Transplantation. 1992 Sep;54(3):511–514. doi: 10.1097/00007890-199209000-00023. [DOI] [PubMed] [Google Scholar]
  26. Terano T., Hirai A., Tamura Y., Kumagai A., Yoshida S. Effect of dietary supplementation of highly purified eicosapentaenoic acid and docosahexaenoic acid on arachidonic acid metabolism in leukocytes and leukocyte function in healthy volunteers. Adv Prostaglandin Thromboxane Leukot Res. 1987;17B:880–885. [PubMed] [Google Scholar]
  27. Yamamoto N., Saitoh M., Moriuchi A., Nomura M., Okuyama H. Effect of dietary alpha-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J Lipid Res. 1987 Feb;28(2):144–151. [PubMed] [Google Scholar]
  28. Yamazaki K., Hamazaki T., Yano S., Funada T., Ibuki F. Changes in fatty acid composition in rat blood and organs after infusion of docosahexaenoic acid ethyl ester. Am J Clin Nutr. 1991 Mar;53(3):620–627. doi: 10.1093/ajcn/53.3.620. [DOI] [PubMed] [Google Scholar]
  29. von Schacky C., Weber P. C. Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans. J Clin Invest. 1985 Dec;76(6):2446–2450. doi: 10.1172/JCI112261. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES