Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Sep;92(3):1349–1356. doi: 10.1172/JCI116708

Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells.

T C Wang 1, S Bonner-Weir 1, P S Oates 1, M Chulak 1, B Simon 1, G T Merlino 1, E V Schmidt 1, S J Brand 1
PMCID: PMC288276  PMID: 8376589

Abstract

Gastrin is transiently expressed in fetal islets during a critical period of their development from protodifferentiated islet precursors in fetal pancreatic ducts. To examine the possible role of gastrin as an islet cell growth factor, postnatal islet growth was studied in transgenic mice which overexpress gastrin and TGF alpha in their pancreas. Overexpression of a TGF alpha transgene causes metaplastic ductules containing numerous insulin expressing cells that resemble protodifferentiated precursors of the fetal pancreas. However, islet mass of the TGF alpha transgenic mice was not increased. Pancreatic overexpression of gastrin from a chimeric insulin/gastrin transgene transcribed from the insulin promoter markedly decreased the TGF alpha-stimulated increase in pancreatic duct mass. Furthermore, pancreatic coexpression of both gastrin and TGF alpha significantly increased islet mass in mice expressing both transgenes. These findings indicate that TGF alpha and gastrin can act synergistically to stimulate islet growth, although neither peptide alone is sufficient. Islet growth may possibly be stimulated through gastrin promoting the differentiation of insulin-positive cells in the TGF alpha-induced metaplastic ducts. This transgenic study suggests that islet neogenesis can be reactivated in the ductular epithelium of the adult pancreas by local expression of two growth factors, gastrin and TGF alpha.

Full text

PDF
1349

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert S., Hanahan D., Teitelman G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell. 1988 Apr 22;53(2):295–308. doi: 10.1016/0092-8674(88)90391-1. [DOI] [PubMed] [Google Scholar]
  2. Bani Sacchi T., Bani D., Biliotti G. Nesidioblastosis and islet cell changes related to endogenous hypergastrinemia. Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;48(3):261–276. doi: 10.1007/BF02890134. [DOI] [PubMed] [Google Scholar]
  3. Bockman D. E., Merlino G. Cytological changes in the pancreas of transgenic mice overexpressing transforming growth factor alpha. Gastroenterology. 1992 Dec;103(6):1883–1892. doi: 10.1016/0016-5085(92)91448-d. [DOI] [PubMed] [Google Scholar]
  4. Bonner-Weir S., Trent D. F., Weir G. C. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest. 1983 Jun;71(6):1544–1553. doi: 10.1172/JCI110910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brand S. J., Fuller P. J. Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem. 1988 Apr 15;263(11):5341–5347. [PubMed] [Google Scholar]
  6. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  7. Cordell B., Bell G., Tischer E., DeNoto F. M., Ullrich A., Pictet R., Rutter W. J., Goodman H. M. Isolation and characterization of a cloned rat insulin gene. Cell. 1979 Oct;18(2):533–543. doi: 10.1016/0092-8674(79)90070-9. [DOI] [PubMed] [Google Scholar]
  8. Dembinski A. B., Johnson L. R. Stimulation of pancreatic growth by secretin, caerulein, and pentagastrin. Endocrinology. 1980 Jan;106(1):323–328. doi: 10.1210/endo-106-1-323. [DOI] [PubMed] [Google Scholar]
  9. Heitz P. U., Klöppel G., Häcki W. H., Polak J. M., Pearse A. G. Nesidioblastosis: the pathologic basis of persistent hyperinsulinemic hypoglycemia in infants. Morphologic and quantitative analysis of seven cases based on specific immunostaining and electron microscopy. Diabetes. 1977 Jul;26(7):632–642. doi: 10.2337/diab.26.7.632. [DOI] [PubMed] [Google Scholar]
  10. Hollande E., Giron B., Lehy T., Accary J. P., Rozé C. In vitro secretion of gastrin, insulin, and glucagon in tissue cultures of pancreas from a child with neonatal intractable hypoglycemia. Gastroenterology. 1976 Aug;71(2):255–262. [PubMed] [Google Scholar]
  11. Ito R., Sato K., Helmer T., Jay G., Agarwal K. Structural analysis of the gene encoding human gastrin: the large intron contains an Alu sequence. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4662–4666. doi: 10.1073/pnas.81.15.4662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jhappan C., Stahle C., Harkins R. N., Fausto N., Smith G. H., Merlino G. T. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell. 1990 Jun 15;61(6):1137–1146. doi: 10.1016/0092-8674(90)90076-q. [DOI] [PubMed] [Google Scholar]
  13. Korc M., Chandrasekar B., Yamanaka Y., Friess H., Buchier M., Beger H. G. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest. 1992 Oct;90(4):1352–1360. doi: 10.1172/JCI116001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Korc M., Matrisian L. M., Magun B. E. Cytosolic calcium regulates epidermal growth factor endocytosis in rat pancreas and cultured fibroblasts. Proc Natl Acad Sci U S A. 1984 Jan;81(2):461–465. doi: 10.1073/pnas.81.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Logsdon C. D., Williams J. A. Intracellular Ca2+ and phorbol esters synergistically inhibit internalization of epidermal growth factor in pancreatic acini. Biochem J. 1984 Nov 1;223(3):893–900. doi: 10.1042/bj2230893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Logsdon C. D., Williams J. A. Pancreatic acini in short-term culture: regulation by EGF, carbachol, insulin, and corticosterone. Am J Physiol. 1983 Jun;244(6):G675–G682. doi: 10.1152/ajpgi.1983.244.6.G675. [DOI] [PubMed] [Google Scholar]
  17. Mainz D. L., Black O., Webster P. D. Hormonal control of pancreatic growth. J Clin Invest. 1973 Sep;52(9):2300–2304. doi: 10.1172/JCI107418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989 May 4;339(6219):27–30. doi: 10.1038/339027a0. [DOI] [PubMed] [Google Scholar]
  19. Morley J. E., Garvin T. J., Pekary A. E., Hershman J. M. Thyrotropin-releasing hormone in the gastrointestinal tract. Biochem Biophys Res Commun. 1977 Nov 7;79(1):314–318. doi: 10.1016/0006-291x(77)90097-3. [DOI] [PubMed] [Google Scholar]
  20. Romanus J. A., Rabinovitch A., Rechler M. M. Neonatal rat islet cell cultures synthesize insulin-like growth factor I. Diabetes. 1985 Jul;34(7):696–702. doi: 10.2337/diab.34.7.696. [DOI] [PubMed] [Google Scholar]
  21. Sandgren E. P., Luetteke N. C., Palmiter R. D., Brinster R. L., Lee D. C. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell. 1990 Jun 15;61(6):1121–1135. doi: 10.1016/0092-8674(90)90075-p. [DOI] [PubMed] [Google Scholar]
  22. Smith F. E., Rosen K. M., Villa-Komaroff L., Weir G. C., Bonner-Weir S. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6152–6156. doi: 10.1073/pnas.88.14.6152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sporn M. B., Roberts A. B. Peptide growth factors are multifunctional. Nature. 1988 Mar 17;332(6161):217–219. doi: 10.1038/332217a0. [DOI] [PubMed] [Google Scholar]
  24. Stadil F., Rehfeld J. F. Preparation of 125 I-labelled synthetic human gastrin I for radioimmunoanalysis. Scand J Clin Lab Invest. 1972 Dec;30(4):361–368. doi: 10.3109/00365517209080271. [DOI] [PubMed] [Google Scholar]
  25. Swenne I. Effects of aging on the regenerative capacity of the pancreatic B-cell of the rat. Diabetes. 1983 Jan;32(1):14–19. doi: 10.2337/diab.32.1.14. [DOI] [PubMed] [Google Scholar]
  26. Teitelman G., Lee J. K. Cell lineage analysis of pancreatic islet development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct. Dev Biol. 1987 Jun;121(2):454–466. doi: 10.1016/0012-1606(87)90182-5. [DOI] [PubMed] [Google Scholar]
  27. Todaro G. J., Fryling C., De Larco J. E. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5258–5262. doi: 10.1073/pnas.77.9.5258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Verme T. B., Hootman S. R. Regulation of pancreatic duct epithelial growth in vitro. Am J Physiol. 1990 Jun;258(6 Pt 1):G833–G840. doi: 10.1152/ajpgi.1990.258.6.G833. [DOI] [PubMed] [Google Scholar]
  29. WEIBEL E. R. Principles and methods for the morphometric study of the lung and other organs. Lab Invest. 1963 Feb;12:131–155. [PubMed] [Google Scholar]
  30. Wheeler M. B., Nishitani J., Buchan A. M., Kopin A. S., Chey W. Y., Chang T. M., Leiter A. B. Identification of a transcriptional enhancer important for enteroendocrine and pancreatic islet cell-specific expression of the secretin gene. Mol Cell Biol. 1992 Aug;12(8):3531–3539. doi: 10.1128/mcb.12.8.3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wiborg O., Berglund L., Boel E., Norris F., Norris K., Rehfeld J. F., Marcker K. A., Vuust J. Structure of a human gastrin gene. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1067–1069. doi: 10.1073/pnas.81.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES