Abstract
Na,K-ATPase (Na,K-pump) plays an important role in the regulation of intracellular ion composition. The purpose of this study is to determine whether Na+ regulates the levels of mRNA coding for Na,K-ATPase alpha and beta subunits in cultured neonatal rat cardiocytes. We measured intracellular Na+ levels ([Na+]i) in cardiocytes using a Na(+)-sensitive fluorescence dye (SBFI). 1 mM ouabain caused a significant increase in [Na+]i in cardiocytes; from 12.8 +/- 0.3 to 28.8 +/- 1.8 mM. Exposure of cardiocytes to 1 mM ouabain resulted in a three- to fourfold increase in alpha 1, alpha 2, and alpha 3 mRNA accumulation, and an approximate two-fold increase in beta 1 mRNA accumulation. A maximum elevation was reached at 60 min in both cases. The ouabain-induced alpha 1 mRNA accumulation was still observed in the Ca(2+)-free culture medium. Exposure of cardiocytes to 10 microM monensin in the absence of extracellular Ca2+ also resulted in a threefold increase in alpha 1 mRNA accumulation. The increased alpha 1 mRNA expression by 1 mM ouabain was associated with a fourfold increase in alpha 1 subunit protein accumulation. Transfection experiments with chimeric plasmids containing 5'-flanking sequences of alpha 1, alpha 2, and alpha 3 isoform genes and a luciferase reporter gene revealed that 1 mM ouabain caused a twofold increase in luciferase activity in each alpha system. These results suggest that Na+ directly regulates Na,K-ATPase gene expression in cardiocytes. The transfection study further supports the premise that Na(+)-responsive elements are located within the 5'-flanking sequences of each alpha isoform gene.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bastide F., Meissner G., Fleischer S., Post R. L. Similarity of the active site of phosphorylation of the adenosine triphosphatase from transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle. J Biol Chem. 1973 Dec 25;248(24):8385–8391. [PubMed] [Google Scholar]
- Bloch K. D., Seidman J. G., Naftilan J. D., Fallon J. T., Seidman C. E. Neonatal atria and ventricles secrete atrial natriuretic factor via tissue-specific secretory pathways. Cell. 1986 Dec 5;47(5):695–702. doi: 10.1016/0092-8674(86)90512-x. [DOI] [PubMed] [Google Scholar]
- Boardman L., Huett M., Lamb J. F., Newton J. P., Polson J. M. Evidence for the genetic control of the sodium pump density in HeLa cells. J Physiol. 1974 Sep;241(3):771–794. doi: 10.1113/jphysiol.1974.sp010684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borzak S., Reers M., Arruda J., Sharma V. K., Sheu S. S., Smith T. W., Marsh J. D. Na+ efflux mechanisms in ventricular myocytes: measurement of [Na+]i with Na(+)-binding benzofuran isophthalate. Am J Physiol. 1992 Sep;263(3 Pt 2):H866–H874. doi: 10.1152/ajpheart.1992.263.3.H866. [DOI] [PubMed] [Google Scholar]
- Bowen J. W., McDonough A. Pretranslational regulation of Na-K-ATPase in cultured canine kidney cells by low K+. Am J Physiol. 1987 Feb;252(2 Pt 1):C179–C189. doi: 10.1152/ajpcell.1987.252.2.C179. [DOI] [PubMed] [Google Scholar]
- Brodie C., Sampson S. R. Effects of chronic ouabain treatment on [3H]ouabain binding sites and electrogenic component of membrane potential in cultured rat myotubes. Brain Res. 1985 Nov 11;347(1):121–123. doi: 10.1016/0006-8993(85)90896-0. [DOI] [PubMed] [Google Scholar]
- Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Cutler C. P., Cramb G., Lamb J. F. Quantitative analysis of sodium pump-specific mRNA from human endothelial (HeLa) and canine kidney (MDCK) cell cultures. Prog Clin Biol Res. 1988;268B:59–64. [PubMed] [Google Scholar]
- Farley R. A., Tran C. M., Carilli C. T., Hawke D., Shively J. E. The amino acid sequence of a fluorescein-labeled peptide from the active site of (Na,K)-ATPase. J Biol Chem. 1984 Aug 10;259(15):9532–9535. [PubMed] [Google Scholar]
- Good P. J., Richter K., Dawid I. B. A nervous system-specific isotype of the beta subunit of Na+,K(+)-ATPase expressed during early development of Xenopus laevis. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9088–9092. doi: 10.1073/pnas.87.23.9088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Herrera V. L., Emanuel J. R., Ruiz-Opazo N., Levenson R., Nadal-Ginard B. Three differentially expressed Na,K-ATPase alpha subunit isoforms: structural and functional implications. J Cell Biol. 1987 Oct;105(4):1855–1865. doi: 10.1083/jcb.105.4.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiatt A., McDonough A. A., Edelman I. S. Assembly of the (Na+ + K+)-adenosine triphosphatase. Post-translational membrane integration of the alpha subunit. J Biol Chem. 1984 Feb 25;259(4):2629–2635. [PubMed] [Google Scholar]
- Hsu Y. M., Guidotti G. Effects of hypokalemia on the properties and expression of the (Na+,K+)-ATPase of rat skeletal muscle. J Biol Chem. 1991 Jan 5;266(1):427–433. [PubMed] [Google Scholar]
- Iizuka H., Atai H. Ouabain susceptibility of heart muscle of the house musk shrew, an insectivore: a comparison with the rat, guinea pig and rhesus monkey. J Pharmacobiodyn. 1987 Aug;10(8):353–355. doi: 10.1248/bpb1978.10.353. [DOI] [PubMed] [Google Scholar]
- Ikeda U., Hyman R., Smith T. W., Medford R. M. Aldosterone-mediated regulation of Na+, K(+)-ATPase gene expression in adult and neonatal rat cardiocytes. J Biol Chem. 1991 Jun 25;266(18):12058–12066. [PubMed] [Google Scholar]
- Ishikawa S. E., Okada K., Saito T. Prompt inhibition of arginine vasopressin-induced cellular adenosine 3',5'-monophosphate production by extracellular sodium depletion in rat renal inner medullary collecting duct cells in culture. Endocrinology. 1990 Aug;127(2):560–566. doi: 10.1210/endo-127-2-560. [DOI] [PubMed] [Google Scholar]
- Kamitani T., Ikeda U., Muto S., Kawakami K., Nagano K., Tsuruya Y., Oguchi A., Yamamoto K., Hara Y., Kojima T. Regulation of Na,K-ATPase gene expression by thyroid hormone in rat cardiocytes. Circ Res. 1992 Dec;71(6):1457–1464. doi: 10.1161/01.res.71.6.1457. [DOI] [PubMed] [Google Scholar]
- Kawakami K., Yagawa Y., Nagano K. Regulation of Na+,K(+)-ATPases. I. Cloning and analysis of the 5'-flanking region of the rat NKAA2 gene encoding the alpha 2 subunit. Gene. 1990 Jul 16;91(2):267–270. doi: 10.1016/0378-1119(90)90098-c. [DOI] [PubMed] [Google Scholar]
- Kim D., Marsh J. D., Barry W. H., Smith T. W. Effects of growth in low potassium medium or ouabain on membrane Na,K-ATPase, cation transport, and contractility in cultured chick heart cells. Circ Res. 1984 Jul;55(1):39–48. doi: 10.1161/01.res.55.1.39. [DOI] [PubMed] [Google Scholar]
- Langer G. A. Mechanism of action of the cardiac glycosides on the heart. Biochem Pharmacol. 1981 Dec 15;30(24):3261–3264. doi: 10.1016/0006-2952(81)90597-9. [DOI] [PubMed] [Google Scholar]
- Martin-Vasallo P., Dackowski W., Emanuel J. R., Levenson R. Identification of a putative isoform of the Na,K-ATPase beta subunit. Primary structure and tissue-specific expression. J Biol Chem. 1989 Mar 15;264(8):4613–4618. [PubMed] [Google Scholar]
- Masuzawa T., Ohta T., Kawakami K., Sato F. Immunocytochemical localization of Na+, K+-ATPase in the canine choroid plexus. Brain. 1985 Sep;108(Pt 3):625–646. doi: 10.1093/brain/108.3.625. [DOI] [PubMed] [Google Scholar]
- Minta A., Tsien R. Y. Fluorescent indicators for cytosolic sodium. J Biol Chem. 1989 Nov 15;264(32):19449–19457. [PubMed] [Google Scholar]
- Okada K., Ishikawa S., Saito T. Effect of vasopressin on Na+ kinetics in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1990 Nov 30;173(1):224–230. doi: 10.1016/s0006-291x(05)81045-9. [DOI] [PubMed] [Google Scholar]
- Okada K., Ishikawa S., Saito T. Mechanisms of vasopressin-induced increase in intracellular Na+ in vascular smooth muscle cells. Am J Physiol. 1991 Dec;261(6 Pt 2):F1007–F1012. doi: 10.1152/ajprenal.1991.261.6.F1007. [DOI] [PubMed] [Google Scholar]
- Orlowski J., Lingrel J. B. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem. 1988 Jul 25;263(21):10436–10442. [PubMed] [Google Scholar]
- Pathak B. G., Pugh D. G., Lingrel J. B. Characterization of the 5'-flanking region of the human and rat Na,K-ATPase alpha 3 gene. Genomics. 1990 Dec;8(4):641–647. doi: 10.1016/0888-7543(90)90250-x. [DOI] [PubMed] [Google Scholar]
- Pollack L. R., Tate E. H., Cook J. S. Na+, K+-ATPase in HeLa cells after prolonged growth in low K+ or ouabain. J Cell Physiol. 1981 Jan;106(1):85–97. doi: 10.1002/jcp.1041060110. [DOI] [PubMed] [Google Scholar]
- Pressley T. A., Ismail-Beigi F., Gick G. G., Edelman I. S. Increased abundance of Na+-K+-ATPase mRNAs in response to low external K+. Am J Physiol. 1988 Aug;255(2 Pt 1):C252–C260. doi: 10.1152/ajpcell.1988.255.2.C252. [DOI] [PubMed] [Google Scholar]
- Price E. M., Lingrel J. B. Structure-function relationships in the Na,K-ATPase alpha subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry. 1988 Nov 1;27(22):8400–8408. doi: 10.1021/bi00422a016. [DOI] [PubMed] [Google Scholar]
- Rayson B. M. Rates of synthesis and degradation of Na+-K+-ATPase during chronic ouabain treatment. Am J Physiol. 1989 Jan;256(1 Pt 1):C75–C80. doi: 10.1152/ajpcell.1989.256.1.C75. [DOI] [PubMed] [Google Scholar]
- Rayson B. M. [Ca2+]i regulates transcription rate of the Na+/K(+)-ATPase alpha 1 subunit. J Biol Chem. 1991 Nov 15;266(32):21335–21338. [PubMed] [Google Scholar]
- Shull G. E., Greeb J., Lingrel J. B. Molecular cloning of three distinct forms of the Na+,K+-ATPase alpha-subunit from rat brain. Biochemistry. 1986 Dec 16;25(25):8125–8132. doi: 10.1021/bi00373a001. [DOI] [PubMed] [Google Scholar]
- Shull G. E., Lane L. K., Lingrel J. B. Amino-acid sequence of the beta-subunit of the (Na+ + K+)ATPase deduced from a cDNA. Nature. 1986 May 22;321(6068):429–431. doi: 10.1038/321429a0. [DOI] [PubMed] [Google Scholar]
- Shull G. E., Schwartz A., Lingrel J. B. Amino-acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA. Nature. 1985 Aug 22;316(6030):691–695. doi: 10.1038/316691a0. [DOI] [PubMed] [Google Scholar]
- Shull M. M., Lingrel J. B. Multiple genes encode the human Na+,K+-ATPase catalytic subunit. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4039–4043. doi: 10.1073/pnas.84.12.4039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taormino J. P., Fambrough D. M. Pre-translational regulation of the (Na+ + K+)-ATPase in response to demand for ion transport in cultured chicken skeletal muscle. J Biol Chem. 1990 Mar 5;265(7):4116–4123. [PubMed] [Google Scholar]
- Verrey F., Schaerer E., Zoerkler P., Paccolat M. P., Geering K., Kraehenbuhl J. P., Rossier B. C. Regulation by aldosterone of Na+,K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J Cell Biol. 1987 May;104(5):1231–1237. doi: 10.1083/jcb.104.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolitzky B. A., Fambrough D. M. Regulation of the (Na+ + K+)-ATPase in cultured chick skeletal muscle. Modulation of expression by the demand for ion transport. J Biol Chem. 1986 Jul 25;261(21):9990–9999. [PubMed] [Google Scholar]
- Yagawa Y., Kawakami K., Nagano K. Cloning and analysis of the 5'-flanking region of rat Na+/K(+)-ATPase alpha 1 subunit gene. Biochim Biophys Acta. 1990 Jul 30;1049(3):286–292. doi: 10.1016/0167-4781(90)90099-n. [DOI] [PubMed] [Google Scholar]
- Young R. M., Shull G. E., Lingrel J. B. Multiple mRNAs from rat kidney and brain encode a single Na+,K+-ATPase beta subunit protein. J Biol Chem. 1987 Apr 5;262(10):4905–4910. [PubMed] [Google Scholar]
- de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]