Abstract
To extend previous observations on the role of polyamines in insulin production, metabolism, and replication of insulin-secreting pancreatic beta cells, we have studied the role of polyamines in the regulation of the stimulus-secretion coupling of clonal rat insulinoma cells (RINm5F). For this purpose, RINm5F cells were partially depleted in their polyamine contents by use of the specific ornithine decarboxylase inhibitor difluoromethylornithine (DFMO), which led to an increase in cellular insulin and ATP contents. Analysis of different parts of the signal transduction pathway revealed that insulin secretion and the increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) after K(+)-induced depolarization were markedly enhanced in DFMO-treated cells. These effects were paralleled by increased voltage-activated Ca2+ currents, as judged by whole-cell patch-clamp analysis, probably reflecting increased channel activity rather than elevated number of channels per cell. DFMO treatment also rendered phospholipase C in these cells more sensitive to the muscarinic receptor agonist carbamylcholine, as evidenced by enhanced generation of inositol phosphates, increase in [Ca2+]i and insulin secretion, despite an unaltered ligand binding to muscarinic receptors and lack of effect on protein kinase C activity. In addition, the tumor promoter 12-O-tetradecanoylphorbol 13-acetate, at concentrations suggested to be specific for protein kinase C activation, evoked an increased insulin output in polyamine-deprived cells compared to control cells. The stimulatory effects of glucose or the cyclic AMP raising agent theophylline on insulin release were not increased by DFMO treatment. In spite of increased binding of sulfonylurea in DFMO-treated cells, there was no secretory response or altered increase in [Ca2+]i in response to the drug in these cells. It is concluded that partial polyamine depletion sensitizes the stimulus-secretion coupling at multiple levels in the insulinoma cells, including increased voltage-dependent Ca2+ influx and enhanced responsiveness to activators of phospholipase C and protein kinase C. In their entirety, our present results indicate that the behavior of the stimulus-secretion coupling of polyamine-depleted RINm5F insulinoma cells changes towards that of native beta cells, thus improving the usefulness of this cell line for studies of beta cell insulin secretion.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albert K. A., Walaas S. I., Wang J. K., Greengard P. Widespread occurrence of "87 kDa," a major specific substrate for protein kinase C. Proc Natl Acad Sci U S A. 1986 May;83(9):2822–2826. doi: 10.1073/pnas.83.9.2822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arkhammar P., Nilsson T., Berggren P. O. Stimulation of insulin release by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate in the clonal cell line RINm5F despite a lowering of the free cytoplasmic Ca2+ concentration. Biochim Biophys Acta. 1986 Jul 11;887(2):236–241. doi: 10.1016/0167-4889(86)90060-1. [DOI] [PubMed] [Google Scholar]
- Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Dunger A., Sjöholm A., Eizirik D. L. Amino acids and human amniotic fluid increase DNA biosynthesis in pancreatic islets of adult mouse, but this effect is lost following exposure to streptozotocin. Pancreas. 1990 Nov;5(6):639–646. doi: 10.1097/00006676-199011000-00002. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. A., Rozengurt E., Heppel L. A. Extracellular ATP induces the release of calcium from intracellular stores without the activation of protein kinase C in Swiss 3T6 mouse fibroblasts. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4530–4534. doi: 10.1073/pnas.86.12.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunning P., Ponte P., Okayama H., Engel J., Blau H., Kedes L. Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol Cell Biol. 1983 May;3(5):787–795. doi: 10.1128/mcb.3.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Heding L. G. Determination of total serum insulin (IRI) in insulin-treated diabetic patients. Diabetologia. 1972 Aug;8(4):260–266. doi: 10.1007/BF01225569. [DOI] [PubMed] [Google Scholar]
- Hellman B. The significance of calcium for glucose stimulation of insulin release. Endocrinology. 1975 Aug;97(2):392–398. doi: 10.1210/endo-97-2-392. [DOI] [PubMed] [Google Scholar]
- Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
- Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
- Hiriart M., Matteson D. R. Na channels and two types of Ca channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J Gen Physiol. 1988 May;91(5):617–639. doi: 10.1085/jgp.91.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hougaard D. M., Larsson L. I. Localization and possible function of polyamines in protein and peptide secreting cells. Med Biol. 1986;64(2-3):89–94. [PubMed] [Google Scholar]
- Hougaard D. M., Nielsen J. H., Larsson L. I. Localization and biosynthesis of polyamines in insulin-producing cells. Biochem J. 1986 Aug 15;238(1):43–47. doi: 10.1042/bj2380043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutton J. C., Peshavaria M., Brocklehurst K. W. Phorbol ester stimulation of insulin release and secretory-granule protein phosphorylation in a transplantable rat insulinoma. Biochem J. 1984 Dec 1;224(2):483–490. doi: 10.1042/bj2240483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
- Kikkawa U., Kishimoto A., Nishizuka Y. The protein kinase C family: heterogeneity and its implications. Annu Rev Biochem. 1989;58:31–44. doi: 10.1146/annurev.bi.58.070189.000335. [DOI] [PubMed] [Google Scholar]
- Kimura T., Imamura K., Eckhardt L., Schulz I. Ca2+-, phorbol ester-, and cAMP-stimulated enzyme secretion from permeabilized rat pancreatic acini. Am J Physiol. 1986 May;250(5 Pt 1):G698–G708. doi: 10.1152/ajpgi.1986.250.5.G698. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Nilsson T., Arkhammar P., Hallberg A., Hellman B., Berggren P. O. Characterization of the inositol 1,4,5-trisphosphate-induced Ca2+ release in pancreatic beta-cells. Biochem J. 1987 Dec 1;248(2):329–336. doi: 10.1042/bj2480329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
- Perdew G. H., Schaup H. W., Selivonchick D. P. The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes. Anal Biochem. 1983 Dec;135(2):453–455. doi: 10.1016/0003-2697(83)90711-x. [DOI] [PubMed] [Google Scholar]
- Praz G. A., Halban P. A., Wollheim C. B., Blondel B., Strauss A. J., Renold A. E. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J. 1983 Feb 15;210(2):345–352. doi: 10.1042/bj2100345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rink T. J., Montecucco C., Hesketh T. R., Tsien R. Y. Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta. 1980;595(1):15–30. doi: 10.1016/0005-2736(80)90243-6. [DOI] [PubMed] [Google Scholar]
- Schoemaker H. Polyamines allosterically modulate [3H]nitrendipine binding to the voltage-sensitive calcium channel in rat brain. Eur J Pharmacol. 1992 Feb 13;225(2):167–169. doi: 10.1016/0922-4106(92)90097-f. [DOI] [PubMed] [Google Scholar]
- Seiler N. Liquid chromatographic methods for assaying polyamines using prechromatographic derivatization. Methods Enzymol. 1983;94:10–25. doi: 10.1016/s0076-6879(83)94004-1. [DOI] [PubMed] [Google Scholar]
- Seino S., Chen L., Seino M., Blondel O., Takeda J., Johnson J. H., Bell G. I. Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):584–588. doi: 10.1073/pnas.89.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sjöholm A., Funakoshi A., Efendić S., Ostenson C. G., Hellerström C. Long term inhibitory effects of pancreastatin and diazepam binding inhibitor on pancreatic beta-cell deoxyribonucleic acid replication, polyamine content, and insulin secretion. Endocrinology. 1991 Jun;128(6):3277–3282. doi: 10.1210/endo-128-6-3277. [DOI] [PubMed] [Google Scholar]
- Sjöholm A., Hellerström C. TGF-beta stimulates insulin secretion and blocks mitogenic response of pancreatic beta-cells to glucose. Am J Physiol. 1991 May;260(5 Pt 1):C1046–C1051. doi: 10.1152/ajpcell.1991.260.5.C1046. [DOI] [PubMed] [Google Scholar]
- Sjöholm A. Intracellular signal transduction pathways that control pancreatic beta-cell proliferation. FEBS Lett. 1992 Oct 19;311(2):85–90. doi: 10.1016/0014-5793(92)81373-t. [DOI] [PubMed] [Google Scholar]
- Sjöholm A. Phorbol ester stimulation of pancreatic beta-cell replication, polyamine content and insulin secretion. FEBS Lett. 1991 Dec 9;294(3):257–260. doi: 10.1016/0014-5793(91)81442-b. [DOI] [PubMed] [Google Scholar]
- Sjöholm A., Welsh N., Hellerström C. Lithium increases DNA replication, polyamine content, and insulin secretion by rat pancreatic beta-cells. Am J Physiol. 1992 Feb;262(2 Pt 1):C391–C395. doi: 10.1152/ajpcell.1992.262.2.C391. [DOI] [PubMed] [Google Scholar]
- Sjöholm A., Welsh N., Hoftiezer V., Bankston P. W., Hellerström C. Increased glucose oxidation and contents of insulin and ATP in polyamine-depleted rat insulinoma cells (RINm5F). Biochem J. 1991 Jul 15;277(Pt 2):533–540. doi: 10.1042/bj2770533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sjöholm A., Welsh N., Sandler S., Hellerström C. Role of polyamines in mitogenic and secretory responses of pancreatic beta-cells to growth factors. Am J Physiol. 1990 Nov;259(5 Pt 1):C828–C833. doi: 10.1152/ajpcell.1990.259.5.C828. [DOI] [PubMed] [Google Scholar]
- Smith C. D., Snyderman R. Modulation of inositol phospholipid metabolism by polyamines. Biochem J. 1988 Nov 15;256(1):125–130. doi: 10.1042/bj2560125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thams P., Capito K., Hedeskov C. J. An inhibitory role for polyamines in protein kinase C activation and insulin secretion in mouse pancreatic islets. Biochem J. 1986 Jul 1;237(1):131–138. doi: 10.1042/bj2370131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
- Welsh N. A role for polyamines in glucose-stimulated insulin-gene expression. Biochem J. 1990 Oct 15;271(2):393–397. doi: 10.1042/bj2710393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh N., Sjöholm A. Polyamines and insulin production in isolated mouse pancreatic islets. Biochem J. 1988 Jun 15;252(3):701–707. doi: 10.1042/bj2520701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wojcikiewicz R. J., Fain J. N. Polyamines inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis. Studies with permeabilized GH3 cells. Biochem J. 1988 Nov 1;255(3):1015–1021. doi: 10.1042/bj2551015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wollheim C. B., Sharp G. W. Regulation of insulin release by calcium. Physiol Rev. 1981 Oct;61(4):914–973. doi: 10.1152/physrev.1981.61.4.914. [DOI] [PubMed] [Google Scholar]



