Abstract
To define the mechanism(s) responsible for the negative inotropic effects of tumor necrosis factor-alpha (TNF alpha) in the adult heart, we examined the functional effects of TNF alpha in the intact left ventricle and the isolated adult cardiac myocyte. Studies in both the ventricle and the isolated adult cardiac myocyte showed that TNF alpha exerted a concentration- and time-dependent negative inotropic effect that was fully reversible upon removal of this cytokine. Further, treatment with a neutralizing anti-TNF alpha antibody prevented the negative inotropic effects of TNF alpha in isolated myocytes. A cellular basis for the above findings was provided by studies which showed that treatment with TNF alpha resulted in decreased levels of peak intracellular calcium during the systolic contraction sequence; moreover, these findings did not appear to be secondary to alterations in the electrophysiological properties of the cardiac myocyte. Further studies showed that increased levels of nitric oxide, de novo protein synthesis, and metabolites of the arachidonic acid pathway were unlikely to be responsible for the TNF alpha-induced abnormalities in contractile function. Thus, these studies constitute the initial demonstration that the negative inotropic effects of TNF alpha are the direct result of alterations in intracellular calcium homeostasis in the adult cardiac myocyte.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggarwal B. B., Kohr W. J., Hass P. E., Moffat B., Spencer S. A., Henzel W. J., Bringman T. S., Nedwin G. E., Goeddel D. V., Harkins R. N. Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem. 1985 Feb 25;260(4):2345–2354. [PubMed] [Google Scholar]
- Arbustini E., Grasso M., Diegoli M., Bramerio M., Foglieni A. S., Albertario M., Martinelli L., Gavazzi A., Goggi C., Campana C. Expression of tumor necrosis factor in human acute cardiac rejection. An immunohistochemical and immunoblotting study. Am J Pathol. 1991 Oct;139(4):709–715. [PMC free article] [PubMed] [Google Scholar]
- Blick M., Sherwin S. A., Rosenblum M., Gutterman J. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 1987 Jun 1;47(11):2986–2989. [PubMed] [Google Scholar]
- Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouchelouche P. N., Bendtzen K., Bak S., Nielsen O. H. Recombinant human tumour necrosis factor increases cytosolic free calcium in murine fibroblasts and stimulates inositol phosphate formation in L-M and arachidonic acid release in 3T3 cells. Cell Signal. 1990;2(5):479–487. doi: 10.1016/0898-6568(90)90044-b. [DOI] [PubMed] [Google Scholar]
- Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claycomb W. C. Cardiac muscle cell proliferation and cell differentiation in vivo and in vitro. Adv Exp Med Biol. 1983;161:249–265. doi: 10.1007/978-1-4684-4472-8_14. [DOI] [PubMed] [Google Scholar]
- Eichenholz P. W., Eichacker P. Q., Hoffman W. D., Banks S. M., Parrillo J. E., Danner R. L., Natanson C. Tumor necrosis factor challenges in canines: patterns of cardiovascular dysfunction. Am J Physiol. 1992 Sep;263(3 Pt 2):H668–H675. doi: 10.1152/ajpheart.1992.263.3.H668. [DOI] [PubMed] [Google Scholar]
- Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkel M. S., Oddis C. V., Jacob T. D., Watkins S. C., Hattler B. G., Simmons R. L. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science. 1992 Jul 17;257(5068):387–389. doi: 10.1126/science.1631560. [DOI] [PubMed] [Google Scholar]
- Gaskill H. V., 3rd Continuous infusion of tumor necrosis factor: mechanisms of toxicity in the rat. J Surg Res. 1988 Jun;44(6):664–671. doi: 10.1016/0022-4804(88)90098-4. [DOI] [PubMed] [Google Scholar]
- Gulick T., Chung M. K., Pieper S. J., Lange L. G., Schreiner G. F. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6753–6757. doi: 10.1073/pnas.86.17.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulick T., Pieper S. J., Murphy M. A., Lange L. G., Schreiner G. F. A new method for assessment of cultured cardiac myocyte contractility detects immune factor-mediated inhibition of beta-adrenergic responses. Circulation. 1991 Jul;84(1):313–321. doi: 10.1161/01.cir.84.1.313. [DOI] [PubMed] [Google Scholar]
- Hülsmann W. C., Dubelaar M. L. Effects of tumor necrosis factor (TNF) on lipolytic activities of rat heart. Mol Cell Biochem. 1988 Feb;79(2):147–151. doi: 10.1007/BF02424557. [DOI] [PubMed] [Google Scholar]
- Jacobson S. L., Piper H. M. Cell cultures of adult cardiomyocytes as models of the myocardium. J Mol Cell Cardiol. 1986 Jul;18(7):661–678. doi: 10.1016/s0022-2828(86)80939-7. [DOI] [PubMed] [Google Scholar]
- Kettelhut I. C., Fiers W., Goldberg A. L. The toxic effects of tumor necrosis factor in vivo and their prevention by cyclooxygenase inhibitors. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4273–4277. doi: 10.1073/pnas.84.12.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilbourn R. G., Gross S. S., Jubran A., Adams J., Griffith O. W., Levi R., Lodato R. F. NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci U S A. 1990 May;87(9):3629–3632. doi: 10.1073/pnas.87.9.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleiman R. B., Houser S. R. Calcium currents in normal and hypertrophied isolated feline ventricular myocytes. Am J Physiol. 1988 Dec;255(6 Pt 2):H1434–H1442. doi: 10.1152/ajpheart.1988.255.6.H1434. [DOI] [PubMed] [Google Scholar]
- Larrick J. W., Wright S. C. Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J. 1990 Nov;4(14):3215–3223. doi: 10.1096/fasebj.4.14.2172061. [DOI] [PubMed] [Google Scholar]
- Lefer A. M., Tsao P., Aoki N., Palladino M. A., Jr Mediation of cardioprotection by transforming growth factor-beta. Science. 1990 Jul 6;249(4964):61–64. doi: 10.1126/science.2164258. [DOI] [PubMed] [Google Scholar]
- Levine B., Kalman J., Mayer L., Fillit H. M., Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990 Jul 26;323(4):236–241. doi: 10.1056/NEJM199007263230405. [DOI] [PubMed] [Google Scholar]
- Mann D. L., Kent R. L., Cooper G., 4th Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation. Circ Res. 1989 Jun;64(6):1079–1090. doi: 10.1161/01.res.64.6.1079. [DOI] [PubMed] [Google Scholar]
- Mann D. L., Kent R. L., Parsons B., Cooper G., 4th Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation. 1992 Feb;85(2):790–804. doi: 10.1161/01.cir.85.2.790. [DOI] [PubMed] [Google Scholar]
- Mann D. L., Urabe Y., Kent R. L., Vinciguerra S., Cooper G., 4th Cellular versus myocardial basis for the contractile dysfunction of hypertrophied myocardium. Circ Res. 1991 Feb;68(2):402–415. doi: 10.1161/01.res.68.2.402. [DOI] [PubMed] [Google Scholar]
- Maury C. P., Teppo A. M. Circulating tumour necrosis factor-alpha (cachectin) in myocardial infarction. J Intern Med. 1989 May;225(5):333–336. doi: 10.1111/j.1365-2796.1989.tb00090.x. [DOI] [PubMed] [Google Scholar]
- McKenna T. M. Prolonged exposure of rat aorta to low levels of endotoxin in vitro results in impaired contractility. Association with vascular cytokine release. J Clin Invest. 1990 Jul;86(1):160–168. doi: 10.1172/JCI114679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMurray J., Abdullah I., Dargie H. J., Shapiro D. Increased concentrations of tumour necrosis factor in "cachectic" patients with severe chronic heart failure. Br Heart J. 1991 Nov;66(5):356–358. doi: 10.1136/hrt.66.5.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mickelson J. K., Simpson P. J., Lucchesi B. R. Myocardial dysfunction and coronary vasoconstriction induced by platelet-activating factor in the post-infarcted rabbit isolated heart. J Mol Cell Cardiol. 1988 Jun;20(6):547–561. doi: 10.1016/s0022-2828(88)80081-6. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Moses R. L., Claycomb W. C. Ultrastructure of terminally differentiated adult rat cardiac muscle cells in culture. Am J Anat. 1982 Jun;164(2):113–131. doi: 10.1002/aja.1001640203. [DOI] [PubMed] [Google Scholar]
- Natanson C., Eichenholz P. W., Danner R. L., Eichacker P. Q., Hoffman W. D., Kuo G. C., Banks S. M., MacVittie T. J., Parrillo J. E. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med. 1989 Mar 1;169(3):823–832. doi: 10.1084/jem.169.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pagani F. D., Baker L. S., Hsi C., Knox M., Fink M. P., Visner M. S. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest. 1992 Aug;90(2):389–398. doi: 10.1172/JCI115873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remick D. G., Kunkel R. G., Larrick J. W., Kunkel S. L. Acute in vivo effects of human recombinant tumor necrosis factor. Lab Invest. 1987 Jun;56(6):583–590. [PubMed] [Google Scholar]
- Schmidt H. H., Warner T. D., Nakane M., Förstermann U., Murad F. Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol. 1992 Apr;41(4):615–624. [PubMed] [Google Scholar]
- Schulz R., Nava E., Moncada S. Induction and potential biological relevance of a Ca(2+)-independent nitric oxide synthase in the myocardium. Br J Pharmacol. 1992 Mar;105(3):575–580. doi: 10.1111/j.1476-5381.1992.tb09021.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selby P., Hobbs S., Viner C., Jackson E., Jones A., Newell D., Calvert A. H., McElwain T., Fearon K., Humphreys J. Tumour necrosis factor in man: clinical and biological observations. Br J Cancer. 1987 Dec;56(6):803–808. doi: 10.1038/bjc.1987.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver L. H., Houser S. R. Transmembrane potassium fluxes in isolated feline ventricular myocytes. Am J Physiol. 1985 May;248(5 Pt 2):H614–H621. doi: 10.1152/ajpheart.1985.248.5.H614. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Smith S. C., Allen P. M. Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis. Circ Res. 1992 Apr;70(4):856–863. doi: 10.1161/01.res.70.4.856. [DOI] [PubMed] [Google Scholar]
- Spriggs D. R., Sherman M. L., Michie H., Arthur K. A., Imamura K., Wilmore D., Frei E., 3rd, Kufe D. W. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study. J Natl Cancer Inst. 1988 Sep 7;80(13):1039–1044. doi: 10.1093/jnci/80.13.1039. [DOI] [PubMed] [Google Scholar]
- Steadman B. W., Moore K. B., Spitzer K. W., Bridge J. H. A video system for measuring motion in contracting heart cells. IEEE Trans Biomed Eng. 1988 Apr;35(4):264–272. doi: 10.1109/10.1375. [DOI] [PubMed] [Google Scholar]
- Suffredini A. F., Fromm R. E., Parker M. M., Brenner M., Kovacs J. A., Wesley R. A., Parrillo J. E. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med. 1989 Aug 3;321(5):280–287. doi: 10.1056/NEJM198908033210503. [DOI] [PubMed] [Google Scholar]
- Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., 3rd, Zentella A., Albert J. D. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. doi: 10.1126/science.3764421. [DOI] [PubMed] [Google Scholar]
- Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
- Tracey K. J., Lowry S. F., Fahey T. J., 3rd, Albert J. D., Fong Y., Hesse D., Beutler B., Manogue K. R., Calvano S., Wei H. Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet. 1987 May;164(5):415–422. [PubMed] [Google Scholar]
- Vaca L., Schilling W. P., Kunze D. L. G-protein-mediated regulation of a Ca(2+)-dependent K+ channel in cultured vascular endothelial cells. Pflugers Arch. 1992 Oct;422(1):66–74. doi: 10.1007/BF00381515. [DOI] [PubMed] [Google Scholar]
- Vilcek J., Lee T. H. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem. 1991 Apr 25;266(12):7313–7316. [PubMed] [Google Scholar]
- Weglicki W. B., Phillips T. M., Freedman A. M., Cassidy M. M., Dickens B. F. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem. 1992 Mar 25;110(2):169–173. doi: 10.1007/BF02454195. [DOI] [PubMed] [Google Scholar]