Abstract
Polymers used in implantable devices, although relatively unreactive, may degrade in vivo through unknown mechanisms. For example, polyetherurethane elastomers used as cardiac pacemaker lead insulation have developed surface defects after implantation. This phenomenon, termed "environmental stress cracking," requires intimate contact between polymer and host phagocytic cells, suggesting that phagocyte-generated oxidants might be involved. Indeed, brief exposure of polyetherurethane to activated human neutrophils, hypochlorous acid, or peroxynitrite produces modifications of the polymer similar to those found in vivo. Damage to the polymer appears to arise predominantly from oxidation of the urethane-aliphatic ester and aliphatic ether groups. There are substantial increases in the solid phase surface oxygen content of samples treated with hypochlorous acid, peroxynitrite or activated human neutrophils, resembling those observed in explanted polyetherurethane. Furthermore, both explanted and hypochlorous acid-treated polyetherurethane show marked reductions in polymer molecular weight. Interestingly, hypochlorous acid and peroxynitrite appear to attack polyetherurethane at different sites. Hypochlorous acid or activated neutrophils cause decreases in the urethane-aliphatic ester stretch peak relative to the aliphatic ether stretch peak (as determined by infrared spectroscopy) whereas peroxynitrite causes selective loss of the aliphatic ether. In vivo degradation may involve both hypohalous and nitric oxide-based oxidants because, after long-term implantation, both stretch peaks are diminished. These results suggest that in vivo destruction of implanted polyetherurethane involves attack by phagocyte-derived oxidants.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boretos J. W., Detmer D. E., Donachy J. H. Segmented polyurethane: a polyether polymer, II. Two years experience. J Biomed Mater Res. 1971 Jul;5(4):373–387. doi: 10.1002/jbm.820050408. [DOI] [PubMed] [Google Scholar]
- Boretos J. W., Pierce W. S., Baier R. E., Leroy A. F., Donachy H. J. Surface and bulk characteristics of a polyether urethane for artificial hearts. J Biomed Mater Res. 1975 May;9(3):327–340. doi: 10.1002/jbm.820090308. [DOI] [PubMed] [Google Scholar]
- Boretos J. W., Pierce W. S. Segmented polyurethane: a new elastomer for biomedical applications. Science. 1967 Dec 15;158(3807):1481–1482. doi: 10.1126/science.158.3807.1481. [DOI] [PubMed] [Google Scholar]
- Boretos J. W. Tissue pathology and physical stability of a polyether elastomer on three-year implantation. J Biomed Mater Res. 1972 Sep;6(5):473–476. doi: 10.1002/jbm.820060513. [DOI] [PubMed] [Google Scholar]
- Chesney J. A., Mahoney J. R., Jr, Eaton J. W. A spectrophotometric assay for chlorine-containing compounds. Anal Biochem. 1991 Aug 1;196(2):262–266. doi: 10.1016/0003-2697(91)90463-4. [DOI] [PubMed] [Google Scholar]
- Coury A. J., Slaikeu P. C., Cahalan P. T., Stokes K. B., Hobot C. M. Factors and interactions affecting the performance of polyurethane elastomers in medical devices. J Biomater Appl. 1988 Oct;3(2):130–179. doi: 10.1177/088532828800300202. [DOI] [PubMed] [Google Scholar]
- Coury A. J., Stokes K. B., Cahalan P. T., Slaikeu P. C. Biostability considerations for implantable polyurethanes. Life Support Syst. 1987 Jan-Mar;5(1):25–39. [PubMed] [Google Scholar]
- Cramer R., Soranzo M. R., Dri P., Menegazzi R., Pitotti A., Zabucchi G., Patriarca P. A simple reliable assay for myeloperoxidase activity in mixed neutrophil-eosinophil cell suspensions: application to detection of myeloperoxidase deficiency. J Immunol Methods. 1984 May 11;70(1):119–125. doi: 10.1016/0022-1759(84)90396-x. [DOI] [PubMed] [Google Scholar]
- Hamers M. N., Bot A. A., Weening R. S., Sips H. J., Roos D. Kinetics and mechanism of the bactericidal action of human neutrophils against Escherichia coli. Blood. 1984 Sep;64(3):635–641. [PubMed] [Google Scholar]
- Himmelhoch S. R., Evans W. H., Mage M. G., Peterson E. A. Purification of myeloperoxidases from the bone marrow of the guinea pig. Biochemistry. 1969 Mar;8(3):914–921. doi: 10.1021/bi00831a022. [DOI] [PubMed] [Google Scholar]
- Ischiropoulos H., Zhu L., Beckman J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992 Nov 1;298(2):446–451. doi: 10.1016/0003-9861(92)90433-w. [DOI] [PubMed] [Google Scholar]
- Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
- Marchant R. E., Miller K. M., Anderson J. M. In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer. J Biomed Mater Res. 1984 Nov-Dec;18(9):1169–1190. doi: 10.1002/jbm.820180917. [DOI] [PubMed] [Google Scholar]
- Phillips R. E., Smith M. C., Thoma R. J. Biomedical applications of polyurethanes: implications of failure mechanisms. J Biomater Appl. 1988 Oct;3(2):207–227. doi: 10.1177/088532828800300204. [DOI] [PubMed] [Google Scholar]
- Stokes K. B. Polyether polyurethanes: biostable or not? J Biomater Appl. 1988 Oct;3(2):228–259. doi: 10.1177/088532828800300205. [DOI] [PubMed] [Google Scholar]
- Stokes K., Cobian K. Polyether polyurethanes for implantable pacemaker leads. Biomaterials. 1982 Oct;3(4):225–231. doi: 10.1016/0142-9612(82)90024-2. [DOI] [PubMed] [Google Scholar]
- Thoma R. J., Phillips R. E. Studies of poly(ether)urethane pacemaker lead insulation oxidation. J Biomed Mater Res. 1987 Apr;21(4):525–530. doi: 10.1002/jbm.820210411. [DOI] [PubMed] [Google Scholar]
- Thomas E. L., Fishman M. Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem. 1986 Jul 25;261(21):9694–9702. [PubMed] [Google Scholar]
- Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
- Zhao Q., Agger M. P., Fitzpatrick M., Anderson J. M., Hiltner A., Stokes K., Urbanski P. Cellular interactions with biomaterials: in vivo cracking of pre-stressed Pellethane 2363-80A. J Biomed Mater Res. 1990 May;24(5):621–637. doi: 10.1002/jbm.820240508. [DOI] [PubMed] [Google Scholar]
- Ziats N. P., Miller K. M., Anderson J. M. In vitro and in vivo interactions of cells with biomaterials. Biomaterials. 1988 Jan;9(1):5–13. doi: 10.1016/0142-9612(88)90063-4. [DOI] [PubMed] [Google Scholar]