Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2009 Nov;158(Suppl 1):S21–S22. doi: 10.1111/j.1476-5381.2009.00501_9.x

Adrenoceptors, β

PMCID: PMC2884555

Overview:β-Adrenoceptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Adrenoceptors, Bylund et al., 1994) are 7TM receptors, activated by the endogenous agonists adrenaline and noradrenaline. Isoprenaline is a synthetic agonist selective for β-adrenoceptors relative to α1- and α2-adrenoceptors, while propranolol (pKi 8.2–9.2) and cyanopindolol (pKi 10.0–11.0) are relatively selective antagonists. β3-Adrenoceptors are relatively resistant to blockade by propranolol (pKi 5.8–7.0), but can be blocked with high concentrations of cyanopindolol (pKi 9.0). Numerous polymorphisms exist for the β1- and β2-adrenoceptors and some of these are associated with alterations in signalling in response to agonists. These polymorphisms are likely to be associated with altered responses to drugs. The X-ray crystal structures of the β1- (Warne et al., 2008) and β2-adrenoceptors (Cherezov et al., 2007) have been solved.

Nomenclature β1 β2 β3
Other names atypical β
Ensembl ID ENSG00000043591 ENSG00000169252 ENSG00000147477
Principal transduction Gs Gs Gs
Rank order of potency Noradenaline > adrenaline Adrenaline > noradenaline Noradenaline = adrenaline
Selective agonists Noradrenaline, xamoterol, RO363, denopamine Procaterol, zinterol, salmeterol, formoterol, terbutaline, fenoterol BRL37344, CL316243, CGP12177A, carazolol, L742791, SB251023
Selective antagonists CGP20712A (8.5–9.3), betaxolol (8.5), atenolol (7.6) ICI118551 (8.3–9.2) SR59230A (8.8), L748328 (8.5)
Probes [125I]-ICYP (20–50 pM) + 70 nM ICI118551 [125I]-ICYP (20–50 pM) + 100 nM CGP20712A [125I]-ICYP (0.5 nM)

Noradrenaline, xamoterol and RO363 show selectivity for β1- relative to β2-adrenoceptors. All β-adrenoceptors couple to Gs (activating adenylyl cyclase and elevating cyclic AMP levels), but it is also clear that they activate other G proteins such as Gi and many other signalling pathways, particularly mitogen-activated protein kinases. Many antagonists at β1- and β2-adrenoceptors are agonists at β3-adrenoceptors (CL316243, CGP12177A and carazolol). Many ‘antagonists’ appear to be able to selectively activate mitogen-activated protein kinase pathways (Baker et al., 2003a; Galandrin and Bouvier, 2006; Sato et al., 2007; Galandrin et al., 2008; Sato et al., 2008). SR59230A has reasonably high affinity at β3-adrenoceptors (Manara et al., 1996), but does not discriminate well between the three β-adrenoceptor subtypes (Candelore et al., 1999) and has been reported to have lower affinity for the β3-adrenoceptor in some circumstances (Kaumann and Molenaar, 1996).

Pharmacological differences exist between human and mouse β3-adrenoceptors, and the ‘rodent selective’ agonists BRL37344 and CL316243 have low efficacy at the human β3-adrenoceptor. The β3-adrenoceptor has introns, but splice variants have only been described for the mouse (Evans et al., 1999). The β-adrenoceptor cloned from turkey (termed the β4c, t428 SwissProt P43141) has a pharmacology that is intermediate between β2- and β3-adrenoceptors (Chen et al., 1994). The ‘putative β4-adrenoceptor’ is not a novel receptor but is likely to represent an alternative site of interaction of CGP12177A and other nonconventional partial agonists at β1-adrenoceptors, as ‘putative β4-adrenoceptor’-mediated agonist effects of CGP12177A are absent in mice lacking β1-adrenoceptors (Konkar et al., 2000; Kaumann et al., 2001).

Radioligand binding to define β1- and β2-adrenoceptors can be conducted in the presence of a ‘saturating’ concentration of a β1- or β2-adrenoceptor-selective antagonist. [3H]-CGP12177 or [3H]-dihydroalprenolol can be used in place of [125I]-ICYP. Binding of a fluorescent analogue of CGP12177 to β2-adrenoceptors in living cells has been described (Baker et al., 2003b). [125I]-ICYP at higher (nM) concentrations can be used to label β3-adrenoceptors in systems where there are few if any other β-adrenoceptor subtypes.

Glossary

Abbreviations:

BRL37344

sodium 4-(2-[2-hydroxy-3-chlorophenyl}ethylamino]propyl)phenoxyacetate

CGP12177A

(-)-4-(3-tert-butylamino-2-hydroxypropoxy)-benzimidazol-2-one

CGP20712A

2-hydroxy-5-(2-[{2-hydroxy-3-(4-[1-methyl-4-trifluoromethyl-2-imidazolyl]phenoxy)propyl}amino]ethoxy)benzamide

CL316243

disodium (R,R)-5-(2-[{2-(3-chlorophenyl)-2-hydroxyethyl}-amino]propyl)-1,3-benzodioxole-2,2,dicarboxylate

ICYP

iodocyanopindolol

L742791

(S)-N-(4-[2-{(3-[4-hydroxyphenoxy]-2-hydroxypropyl)amino}ethyl]phenyl)-4-iodobenzenesulfonamide

L748328

(S)-N-(4-[2-{(3-[3-{aminosulfonyl}phenoxy]-2-hydroxypropyl)-amino}ethyl]phenyl)benzenesulfonamide

RO363

(-)-1-(3,4-dimethoxyphenethylamino)-3-(3,4-dihdroxyphenoxy)-2-propanol)oxalate

SB251023

(4-[1-{2-(S)-hydroxy-3-(4-hydroxyphenoxy)-propylamino}cyclopentylmethyl]phenoxymethyl)phenylphosphonic acid lithium salt

SR59230A

3-(2-ethylphenoxy)-1([1s]-1,2,3,4-tetrahydronaphth-1-ylamino)-2S-propanol oxalate

Further Reading

Ahles A, Engelhardt S (2009). Polymorphisms determine β-adrenoceptor conformation: implications for cardiovascular disease and therapy. Trends Pharmacol Sci30: 188–193.

Brodde OE (2008). β1 and β2 adrenoceptor polymorphisms: Functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther117: 1–29.

Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP et al. (1994). International Union of Pharmacology IV. Nomenclature of adrenoceptors. Pharmacol Rev46: 121–136.

Kaumann AJ, Molenaar P (2008). The low-affinity site of the β1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther118: 303–336.

Mustafi D, Palczewski K (2009). Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol75: 1–12.

Philipp M, Hein L (2004). Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther101: 65–74.

Rosenbaum DM, Rasmussen SG, Kobilka BK (2009). The structure and function of G-protein-coupled receptors. Nature459: 356–363.

References

  1. Baker JG, et al. Mol Pharmacol. 2003a;64:1357–1369. doi: 10.1124/mol.64.6.1357. [DOI] [PubMed] [Google Scholar]
  2. Baker JG, et al. Br J Pharmacol. 2003b;139:232–242. doi: 10.1038/sj.bjp.0705287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Candelore MR, et al. J Pharmacol Exp Ther. 1999;290:649–655. [PubMed] [Google Scholar]
  4. Chen XH, et al. J Biol Chem. 1994;269:24810–24819. [PubMed] [Google Scholar]
  5. Cherezov V, et al. Science. 2007;318:1258–1265. doi: 10.1126/science.1150577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans BA, et al. Br J Pharmacol. 1999;127:1525–1531. doi: 10.1038/sj.bjp.0702688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galandrin S, Bouvier M. Mol Pharmacol. 2006;70:1575–1584. doi: 10.1124/mol.106.026716. [DOI] [PubMed] [Google Scholar]
  8. Galandrin S, et al. Mol Pharmacol. 2008;74:162–172. doi: 10.1124/mol.107.043893. [DOI] [PubMed] [Google Scholar]
  9. Kaumann AJ, Molenaar P. Br J Pharmacol. 1996;118:2085–2098. doi: 10.1111/j.1476-5381.1996.tb15648.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaumann AJ, et al. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:87–93. doi: 10.1007/s002100000336. [DOI] [PubMed] [Google Scholar]
  11. Konkar AA, et al. Mol Pharmacol. 2000;57:252–258. [PubMed] [Google Scholar]
  12. Manara L, et al. Br J Pharmacol. 1996;117:435–442. doi: 10.1111/j.1476-5381.1996.tb15209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sato M, et al. Mol Pharmacol. 2007;72:1359–1368. doi: 10.1124/mol.107.035337. [DOI] [PubMed] [Google Scholar]
  14. Sato M, et al. Mol Pharmacol. 2008;74:1417–1428. doi: 10.1124/mol.108.046979. [DOI] [PubMed] [Google Scholar]
  15. Warne T, et al. Nature. 2008;454:486–491. doi: 10.1038/nature07101. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES