Overview: Caspases, which derive their name from Cysteine ASPartate-specific proteASES, include at least two families; initiator caspases (caspases 2, 8, 9 and 10), which are able to hydrolyse and activate a second family of effector caspases (caspases 3, 6 and 7), which themselves are able to hydrolyse further cellular proteins to bring about programmed cell death. Caspases are heterotetrameric, being made up of two pairs of subunits, generated by a single gene product, which is proteolysed to form the mature protein. Members of the mammalian inhibitors of apoptosis proteins (IAP) are able to bind the procaspases, thereby preventing maturation to active proteinases.
| Nomenclature | Caspase 1 | Caspase 2 | Caspase 3 | Caspase 4 |
|---|---|---|---|---|
| Other names | CASP1, interleukin-1β convertase, IL-1BC, interleukin-1 β-converting enzyme, IL-1 β-converting enzyme, ICE, p45 | CASP2, ICH-1 protease, neural precursor cell expressed developmentally down-regulated protein 2, NEDD-2 | CASP3, apopain, cysteine protease CPP32, Yama protein, SREBP cleavage activity 1, SCA-1 | CASP4, ICH-2 protease, TX protease, ICE(rel)-II, |
| Subunits | Caspase-1 subunit p20; Caspase-1 subunit p10 | Caspase-2 subunit p18; Caspase-2 subunit p13; Caspase-2 subunit p12 | Caspase-3 subunit p17; Caspase-3 subunit p12 | Caspase-4 subunit 1; Caspase-4 subunit 2 |
| EC | 3.4.22.36 | 3.4.22.55 | 3.4.22.56 | 3.4.22.57 |
| Ensembl ID | ENSG00000137752 | ENSG00000106144 | ENSG00000164305 | ENSG00000196954 |
| Substrates | Pro-caspase 4, pro-interleukin-1β, D4-GD1, parkin | Pro-caspase 7, caspase 3, PARP, ICAD, Rb, PKCδ, Huntingtin | Pro-caspase 1 | |
| Endogenous activators | Caspase 8, caspase 9, caspase 10, GrB | |||
| Activators | PAC1 (Putt et al., 2006), PETCM (Jiang et al., 2003) | |||
| Selective inhibitors | Z-YVAD-FMK (Avivi-Green et al., 2002) | Z-VDVAD-FMK (Gamen et al., 2000) | AZ10417808 (Scott et al., 2003), Z-DEVD-FMK (Brockstedt et al., 1998), Z-DQMD-FMK (Izban et al., 2001) |
CARD16 (Caspase recruitment domain-containing protein 16, caspase-1 inhibitor COP, CARD only domain-containing protein 1, pseudo interleukin-1β converting enzyme, pseudo-ICE, ENSG00000204397) shares sequence similarity with some of the caspases.
| Nomenclature | Caspase 5 | Caspase 6 | Caspase 7 | Caspase 8 |
|---|---|---|---|---|
| Other names | CASP5, ICH-3 protease, TY protease, ICE(rel)-III | CASP6, apoptotic protease Mch-2 | CASP7, ICE-like apoptotic protease 3, ICE-LAP3, apoptotic protease Mch-3, CMH-1 | CASP8, CE-like apoptotic protease 5, MORT1-associated CED-3 homolog, MACH, FADD-homologous ICE/CED-3-like protease, FADD-like ICE, FLICE, apoptotic cysteine protease, apoptotic protease Mch-5, CAP4 |
| Subunits | Caspase-5 subunit p20; Caspase-5 subunit p10 | Caspase-6 subunit p18; Caspase-6 subunit p11 | Caspase-7 subunit p20; Caspase-7 subunit p11 | Caspase-8 subunit p18; Caspase-8 subunit p10 |
| EC | 3.4.22.58 | 3.4.22.59 | 3.4.22.60 | 3.4.22.61 |
| Ensembl ID | ENSG00000137757 | ENSG00000138794 | ENSG00000165806 | ENSG00000064012 |
| Substrates | Pro-caspase 7, caspase 3, PARP, ICAD, Rb, PKCδ, Huntingtin | Pro-caspase 3, pro-caspase 7, caspase 8, Bid, FLIP, pro-caspase 6 | ||
| Endogenous activators | Caspase 8, caspase 9, caspase 10, GrB | Caspase 8, caspase 9, caspase 10, GrB | DISC | |
| Selective inhibitors | Z-WEHD-FMK (Naito et al., 2002) | Z-VEID-FMK (Ruchaud et al., 2002) | Z-IETD-FMK (Gregoli and Bondurant, 1999) |
| Nomenclature | Caspase 9 | Caspase 10 | Caspase 14 |
|---|---|---|---|
| Other names | ICE-like apoptotic protease 6, ICE-LAP6, apoptotic protease Mch-6, apoptotic protease-activating factor 3, APAF-3 | CASP10, ICE-like apoptotic protease 4, apoptotic protease Mch-4, FAS-associated death domain protein interleukin-1B-converting enzyme 2, FLICE2 | CASP14 |
| Subunits | Caspase-9 subunit p35; Caspase-9 subunit p10 | Caspase-10 subunit p23/17; Caspase-10 subunit p12 | Caspase-14 subunit p19; Caspase-14 subunit p10 |
| EC | 3.4.22.62 | 3.4.22.63 | 3.4.22.- |
| Ensembl ID | ENSG00000132906 | ENSG00000003400 | ENSG00000105141 |
| Substrates | Pro-caspase 3, pro-caspase 7, caspase 9, pro-caspase 6, PARP | Pro-caspase 3, pro-caspase 7, caspase 10, pro-caspase 6 | |
| Endogenous activators | DISC | ||
| Selective inhibitors | Z-LEHD-FMK (Mocanu et al., 2000) |
Glossary
Abbreviations:
- AZ10417808
2-([3,4-dichlorophenyl]amino)-1,4-dihydro-6-nitro-4-oxo-N-2-propenyl-8-quinazolinecarboxamide
- PAC1
4-(phenylmethyl)-1-piperazineacetic acid ([2-hydroxy-3-{2-propenyl}phenyl]methylene)hydrazide
- PETCM
1-(trichloromethyl)-2-(4-pyridine)ethanol
- Z-DEVD-FMK
benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone
- Z-DQMD-FMK
benzyloxycarbonyl-Asp(OMe)-Gln-Met-Asp(OMe)-fluoromethylketone
- Z-LEHD-FMK
benzyloxycarbonyl-Leu-Glu(OMe)-His-Asp(OMe)-fluoromethylketone
- Z-VDVAD-FMK
benzyloxycarbonyl-Val-Asp(OMe)-Val-Ala-Asp(OMe)-fluoromethylketone
- Z-VEID-FMK
benzyloxycarbonyl-Val-Glu(OMe)-Ile-Asp(OMe)-fluoromethylketone
- Z-VYAD-FMK
benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone
- Z-WEHD-FMK
benzyloxycarbonyl-Trp-Glu(OMe)-His-Asp(OMe)-fluoromethylketone
Further Reading
Festjens N, Cornelis S, Lamkanfi M, Vandenabeele P (2006). Caspase-containing complexes in the regulation of cell death and inflammation. Biol Chem387: 1005–1016.
Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol10: 241–247.
Okun I, Balakin KV, Tkachenko SE, Ivachtchenko AV (2008). Caspase activity modulators as anticancer agents. Anticancer Agents Med Chem8: 322–341.
Taylor RC, Cullen SP, Martin SJ (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol9: 231–241.
References
- Avivi-Green C, et al. J Nutr. 2002;132:1812–1818. doi: 10.1093/jn/132.7.1812. [DOI] [PubMed] [Google Scholar]
- Brockstedt E, et al. J Biol Chem. 1998;273:28057–28064. doi: 10.1074/jbc.273.43.28057. [DOI] [PubMed] [Google Scholar]
- Gamen S, et al. Exp Cell Res. 2000;258:223–235. doi: 10.1006/excr.2000.4924. [DOI] [PubMed] [Google Scholar]
- Gregoli PA, Bondurant MC. J Cell Physiol. 1999;178:133–143. doi: 10.1002/(SICI)1097-4652(199902)178:2<133::AID-JCP2>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Izban KF, et al. Mod Pathol. 2001;14:297–310. doi: 10.1038/modpathol.3880306. [DOI] [PubMed] [Google Scholar]
- Jiang X, et al. Science. 2003;299:223–226. doi: 10.1126/science.1076807. [DOI] [PubMed] [Google Scholar]
- Mocanu MM, et al. Br J Pharmacol. 2000;130:197–200. doi: 10.1038/sj.bjp.0703336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naito T, et al. Nucleic Acids Res Suppl 2. 2002:241–242. [PubMed] [Google Scholar]
- Putt KS, et al. Nat Chem Biol. 2006;2:543–550. doi: 10.1038/nchembio814. [DOI] [PubMed] [Google Scholar]
- Ruchaud S, et al. EMBO J. 2002;21:1967–1977. doi: 10.1093/emboj/21.8.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott CW, et al. J Pharmacol Exp Ther. 2003;304:433–440. doi: 10.1124/jpet.102.039651. [DOI] [PubMed] [Google Scholar]
