Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2009 Nov;158(Suppl 1):S49. doi: 10.1111/j.1476-5381.2009.00501_27.x

Galanin

PMCID: PMC2884580

Overview: Galanin receptors (provisional nomenclature, see Foord et al., 2005) are activated by the endogenous peptides galanin (ENSG00000069482) and galanin-like peptide (GALP, ENSG00000105099). Human galanin is a 30 amino-acid non-amidated peptide (Evans and Shine, 1991); in other species, it is 29 amino-acids long and C-terminally amidated. Amino-acids 1–14 of galanin are highly conserved in mammals, birds, reptiles, amphibia and fish. Shorter peptide species (e.g. human galanin-1–19, (Bersani et al., 1991a) and porcine galanin-5–29 (Sillard et al., 1992) and N-terminally extended forms [e.g. N-terminally seven and nine residue elongated forms of porcine galanin (Bersani et al., 1991b; Sillard et al., 1992)] have been reported.

Nomenclature GAL1 GAL2 GAL3
Other names Galanin-1 receptor, GALR1 Galanin-2 receptor, GALR2 Galanin-3 receptor, GALR3
Ensembl ID ENSG00000166573 ENSG00000182687 ENSG00000128310
Principal transduction Gi/o Gi/o, Gq/11 Gi/o
Rank order of potency Galanin > GALP (Ohtaki et al., 1999) GALP ≥ galanin (Ohtaki et al., 1999) GALP > galanin (Lang et al., 2005)
Selective agonists Galanin-(2–29) (Fathi et al., 1997; Wang et al., 1997), D-Trp2-galanin-(1–29) (Smith et al., 1997)
Selective antagonists 2,3-Dihydro-dithiin and -dithiepine-1,1,4,4-tetroxides (Scott et al., 2000) M871 (7.9, Sollenberg et al., 2006)

Galanin-(1–11) is a high-affinity agonist at GAL1/GAL2 (pKi 9), and galanin-(2–11) is selective for GAL2 and GAL3 compared with GAL1 (Lu et al., 2005). [125I]-[Tyr26]galanin binds to all three subtypes with Kd values ranging from 0.05 to 1 nM (Skofitsch et al., 1986; Smith et al., 1997; 1998; Wang et al., 1997; Fitzgerald et al., 1998). Porcine galanin-(3–29) does not bind to cloned GAL1, GAL2 or GAL3 receptors, but a receptor that is functionally activated by porcine galanin-(3–29) has been reported in pituitary and gastric smooth muscle cells (Wynick et al., 1993; Gu et al., 1995). Additional galanin receptor subtypes are also suggested from studies with chimeric peptides (e.g. M15, M35 and M40), which act as antagonists in functional assays in the cardiovascular system (Ulman et al., 1993), spinal cord (Wiesenfeld-Hallin et al., 1992), locus coeruleus, hippocampus (Bartfai et al., 1991) and hypothalamus (Leibowitz and Kim, 1992; Bartfai et al., 1993), but exhibit agonist activity at some peripheral sites (Bartfai et al., 1993; Gu et al., 1995). The chimeric peptides M15, M32, M35, M40 and C7 are agonists at GAL1 receptors expressed endogenously in Bowes human melanoma cells (Ohtaki et al., 1999), and at heterologously expressed recombinant GAL1, GAL2 and GAL3 receptors (Smith et al., 1997; Fitzgerald et al., 1998; Smith et al., 1998).

Glossary

Abbreviations:

C7

galanin-(1–13)-spantide

M15

galanin-(1–13)-substance P-5–11 amide, also known as galantide

M32

galanin-(1–13)-neuropeptide Y amide-(25–36) amide

M35

galanin-(1–13)-bradykinin-(2–9) amide

M40

galanin-(1–13)-Pro-Pro-Ala-Leu-Ala-Leu-Ala-Leu-Ala amide

M871

galanin-(2–13)-Glu-His-(Pro)3-(Ala-Leu)2-Ala-amide

Further Reading

Bauer JW, Lang R, Jakab M, Kofler B (2008). Galanin family of peptides in skin function. Cell Mol Life Sci65: 1820–1825.

Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP et al. (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev57: 279–288.

Lang R, Gundlach AL, Kofler B (2007). The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther115: 177–207.

Man PS, Lawrence CB (2008). Galanin-like peptide: a role in the homeostatic regulation of energy balance? Neuropharmacology55: 1–7.

Mitsukawa K, Lu X, Bartfai T (2008). Galanin, galanin receptors and drug targets. Cell Mol Life Sci65: 1796–1805.

Ogren SO, Kuteeva E, Hokfelt T, Kehr J (2006). Galanin receptor antagonists: a potential novel pharmacological treatment for mood disorders. CNS Drugs20: 633–654.

Walton KM, Chin JE, Duplantier AJ, Mather RJ (2006). Galanin function in the central nervous system. Curr Opin Drug Discov Devel9: 560–570.

References

  1. Bartfai T, et al. Proc Natl Acad Sci USA. 1991;88:10961–10965. doi: 10.1073/pnas.88.23.10961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartfai T, et al. Proc Natl Acad Sci USA. 1993;90:11287–11291. doi: 10.1073/pnas.90.23.11287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bersani M, et al. FEBS Lett. 1991a;283:189–194. doi: 10.1016/0014-5793(91)80585-q. [DOI] [PubMed] [Google Scholar]
  4. Bersani M, et al. Endocrinology. 1991b;129:2693–2698. doi: 10.1210/endo-129-5-2693. [DOI] [PubMed] [Google Scholar]
  5. Evans HF, Shine J. Endocrinology. 1991;129:1682–1684. doi: 10.1210/endo-129-3-1682. [DOI] [PubMed] [Google Scholar]
  6. Fathi Z, et al. Mol Brain Res. 1997;51:49–59. doi: 10.1016/s0169-328x(97)00210-6. [DOI] [PubMed] [Google Scholar]
  7. Fitzgerald LW, et al. J Pharmacol Exp Ther. 1998;287:448–456. [PubMed] [Google Scholar]
  8. Gu ZF, et al. J Pharmacol Exp Ther. 1995;272:371–378. [PubMed] [Google Scholar]
  9. Lang R, et al. Neuropeptides. 2005;39:179–184. doi: 10.1016/j.npep.2004.12.015. [DOI] [PubMed] [Google Scholar]
  10. Leibowitz SF, Kim T. Brain Res. 1992;599:148–152. doi: 10.1016/0006-8993(92)90863-5. [DOI] [PubMed] [Google Scholar]
  11. Lu X, et al. Neuropeptides. 2005;39:165–167. doi: 10.1016/j.npep.2004.12.013. [DOI] [PubMed] [Google Scholar]
  12. Ohtaki T, et al. J Biol Chem. 1999;274:37041–37045. doi: 10.1074/jbc.274.52.37041. [DOI] [PubMed] [Google Scholar]
  13. Scott MK, et al. Bioorg Med Chem. 2000;8:1383–1391. doi: 10.1016/s0968-0896(00)00062-6. [DOI] [PubMed] [Google Scholar]
  14. Sillard R, et al. Peptides. 1992;13:1055–1060. doi: 10.1016/0196-9781(92)90005-n. [DOI] [PubMed] [Google Scholar]
  15. Skofitsch G, et al. Peptides. 1986;7:1029–1042. doi: 10.1016/0196-9781(86)90133-6. [DOI] [PubMed] [Google Scholar]
  16. Smith KE, et al. J Biol Chem. 1997;272:24612–24616. doi: 10.1074/jbc.272.39.24612. [DOI] [PubMed] [Google Scholar]
  17. Smith KE, et al. J Biol Chem. 1998;273:23321–23326. doi: 10.1074/jbc.273.36.23321. [DOI] [PubMed] [Google Scholar]
  18. Sollenberg UE, et al. Int J Pept Res Ther. 2006;12:115–119. [Google Scholar]
  19. Ulman LG, et al. J Physiol. 1993;464:491–499. doi: 10.1113/jphysiol.1993.sp019647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang S, et al. Mol Pharmacol. 1997;52:337–343. doi: 10.1124/mol.52.3.337. [DOI] [PubMed] [Google Scholar]
  21. Wiesenfeld-Hallin Z, et al. Proc Natl Acad Sci USA. 1992;89:3334–3337. doi: 10.1073/pnas.89.8.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wynick D, et al. Proc Natl Acad Sci USA. 1993;90:4231–4235. doi: 10.1073/pnas.90.9.4231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES