5-HT (5-Hydroxytryptamine) receptors [nomenclature as agreed by NC-IUPHAR Subcommittee on 5-HT receptors (Hoyer et al., 1994) and subsequently revised (Hartig et al., 1996)] are, with the exception of the ionotropic 5-HT3 class, 7TM receptors where the endogenous agonist is 5-HT. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique to the 7TM receptors, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology (reviewed by Bockaert et al., 2006; Werry et al., 2008).
| Nomenclature | 5-HT1A | 5-HT1B | 5-HT1D | 5-ht1E |
|---|---|---|---|---|
| Other names | – | 5-HT1Dβ | 5-HT1Dα | – |
| Ensembl ID | ENSG00000178394 | ENSG00000135321 | ENSG00000179546 | ENSG00000168830 |
| Principal transduction | Gi/o | Gi/o | Gi/o | Gi/o |
| Selective agonists (pKi) | 8-OH-DPAT (8.4–9.4), U92016A (9.7) | L694247 (9.2), CP94253 (8.7) | PNU109291 (9.0 – gorilla, Ennis et al., 1998), sumatriptan (8.0–8.7), eletriptan (8.9), L694247 (9.0, Wurch et al., 1998) | – |
| Selective antagonists (pKi) | (±)WAY100635 (7.9–9.2), (S)-UH301 (7.9–8.6), NAD299 (robalzotan, 9.2) | SB236057 (8.2, inverse agonist, Middlemiss et al., 1999), SB224289 (inverse agonist, 8.2–8.6), GR55562 (pKB 7.4, Hoyer et al., 2002) | SB714786 (9.1) BRL15572 (7.9) | – |
| Probes (KD) | [3H]WAY100635 (0.3 nM, Khawaja et al., 1997), [3H]NAD299 (0.16 nM), [3H]8-OH-DPAT (0.4 nM), [11C]WAY100635 (PET ligand), p-[18F]MPPF (PET ligand) | [3H]Alniditan (2.0–2.4 nM), [3H]eletriptan (3 nM), [3H]sumatriptan (11 nM) [125I]GTI, [3H]GR125743 (2.6 nM, Xie et al., 1999), [N-methyl-3H3]AZ10419369 (PET ligand) | [3H]Alniditan (1.2–1.4 nM), [3H]eletriptan (0.9 nM), [3H]sumatriptan (7 nM), [125I]GTI, [3H]GR125743 (2.8 nM, Xie et al., 1999) | [3H]5-HT (6 nM) |
| Nomenclature | 5-HT1F | 5-HT2A | 5-HT2B | 5-HT2C |
|---|---|---|---|---|
| Other names | 5-HT1Eβ, 5-HT6 | D, 5-HT2 | 5-HT2F | 5-HT1C |
| Ensembl ID | ENSG00000179097 | ENSG00000102468 | ENSG00000135914 | ENSG00000147246 |
| Principal transduction | Gi/o | Gq/11 | Gq/11 | Gq/11 |
| Selective agonists (pKi) | LY344864 (8.2, Phebus et al et al., 1997) LY334370 (8.7) | DOI (7.4–9.2) | DOI (7.6–7.7), Ro600175 (8.3), BW723C86 (7.3–8.6) | DOI (7.2–8.6), Ro600175 (7.7–8.2), WAY163909 (8.0, Dunlop et al., 2005), Locaserine (7.8, Thomsen et al., 2008) |
| Selective antagonists (pKi) | – | ketanserin (8.1–9.7), MDL100907 (9.4) | RS127445 (9.0), EGIS-7625 (9.0) | SB242084 (8.2–9.0), RS102221 (8.3–8.4), FR260010 (8.9, Harada et al., 2006) |
| Probes (KD) | [3H]LY334370 (0.5 nM), [125I]LSD | [3H]ketanserin (0.2–1.3 nM), [3H]RP62203 (fananserin, 0.13 nM – rat, Malgouris et al., 1993), [11C]M100907 (PET ligand), [18F]altanserin (PET ligand) | [3H]5-HT (8 nM – rat) | [3H]mesulergine (0.5–2.2 nM), [3H]LSD |
| Nomenclature | 5-HT4 | 5-ht5A | 5-ht5B | 5-HT6 |
|---|---|---|---|---|
| Other names | – | 5-HT5α | – | – |
| Ensembl ID | ENSG00000164270 | ENSG00000157219 | ENSMUSG00000050534 | ENSG00000158748 |
| Principal transduction | Gs | Gi/Go? | None identified | Gs |
| Selective agonists (pKi) | BIMU8 (7.3), ML10302 (7.9–9.0), RS67506 (8.8 – guinea-pig, Eglen et al., 1995) | – | – | WAY-181187 (8.7, Schechter et al., 2008)E-6801 (partial agonist, 8.7, Holenz et al., 2005) |
| Selective antagonists (pKi) | GR113808 (9.3–10.3), SB204070 (9.8–10.4), RS100235 (8.7–12.2) | SB699551 (8.2) | – | SB399886 (9.4, Hirst et al., 2006)SB271046 (8.9), SB357134 (8.5, Bromidge et al., 2001), Ro630563 (7.9–8.4) |
| Probes (KD) | [3H]GR113808 (50–200 pM), [125I]SB207710 (86 pM – piglet, Brown et al., 1993), [3H]RS57639 (0.25 nM – guinea-pig, Bonhaus et al., 1997)[11C] SB207145 (PET ligand) | [3H]5-CT (2.5 nM), [125I]LSD (0.2 nM) | [3H]5-CT, [125I]LSD | [125I]SB258585 (1.0 nM, Hirst et al., 2000), [3H]Ro630563 (5 nM, Boess et al., 1998), [3H]5-CT, [125I]LSD (2 nM) |
| Nomenclature | 5-HT7 |
|---|---|
| Other names | 5-HTX, 5-HT1-like |
| Ensembl ID | ENSG00000148680 |
| Principal transduction | Gs |
| Selective agonists | – |
| Selective antagonists (pKi) | SB656104 (8.7, Forbes et al., 2002), SB269970 (8.6–8.9 Thomas et al., 2000), SB258719 (7.5) |
| Radioligands (KD) | [3H]SB269970 (1.2 nM, Thomas et al., 2000), [3H]5-CT (0.4 nM, Thomas et al., 2000) [3H]LSD (3 nM), [3H]5-HT (1–8 nM) |
Tabulated pKi and KD values refer to binding to human 5-HT receptors unless indicated otherwise. Unreferenced values are extracted from the NC-IUPHAR database (http://www.iuphar-db.org). The nomenclature of 5-HT1B/5-HT1D receptors has been revised (Hartig et al., 1996). Only the non-rodent form of the receptor was previously called 5-HT1Dβ: the human 5-HT1B receptor (tabulated) displays a different pharmacology to the rodent forms of the receptor due to Thr335 of the human sequence being replaced by Asn in rodent receptors. NAS181 is a selective antagonist of the rodent 5-HT1B receptor. Fananserin and ketanserin bind with high affinity to dopamine D4 and histamine H1 receptors respectively, in addition to 5-HT2A receptors. The human 5-ht5A receptor has been claimed to couple to several signal transduction pathways when stably expressed in C6 glioma cells (Noda et al., 2003). The human orthologue of the mouse 5-ht5B receptor is non-functional due to interruption of the gene by stop codons. In addition to the receptors listed in the table, an ‘orphan’ receptor, unofficially termed 5-HT1P, has been described (Gershon, 1999).
Glossary
Abbreviations:
- 5-CT
5-carboxamidotryptamine
- 8-OH-DPAT
8-hydroxy-2-(di-n-propylamino)tetralin
- [N-methyl-3H3]AZ10419369
5-methyl-8-(4-methyl-piperazin-1-yl)-4-oxo-4H-chromene-2-carboxylicacid (4-morpholin-4-yl-phenyl)-amide
- BIMU8
(endo-N-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-2,3-dihydro-3-isopropyl-2-oxo-1H-benzimidazol-1-carboxamide hydrochloride
- BRL15572
3-[4-(3-chlorophenyl) piperazin-1-yl]-1,1,-diphenyl-2-propanol
- BW723C86
1-[5(2-thienylmethoxy)-1H-3-indolyl]propan-2-amine hydrochloride
- CP94253:
3- (1,2,5,6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3, 2-b] pyridine
- E-6801
6-chloro-N-(3-(2-dimethylamino)ethyl)-1H-indol-5-yl)imidazo[2,1-b]thiazole-5-sulfonamide
- EGIS-7625
1-benzyl-4-[(2-nitro-4-methyl-5-amino)-phenyl]-piperazine
- FR260010
(N-[3-(4-methyl-1H-imidazol-1-yl)phenyl]-5,6-dihydrobenzo[h]quinazolin-4-amine
- GR55562
3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide
- GR113808
[1-2[(methylsuphonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate
- GR125743
n-[4-methoxy-3-(4-methyl-1-piperizinyl)phenyl]-3-methyl-4-(4-pyrindinyl)benzamide
- GTI
5-hydroxytryptamine-5-O-carboxymethylglycyltyrosinamide
- L694247
2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indol-3yl] ethanamine
- LY334370
5-(4-flurobenzoyl)amino-3-(1-methylpiperidin-4-yl)-1H-indole fumarate
- LY344864
N-[(6R)-6-dimethylamino-6,7,8,9-tetrahydro-5H-carbazo-3-yl]-4-fluorobenzamide
- MDL100907
(+/-)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol]
- NAD299
(R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzo pyran-5-carboxamide
- NAS181
(R)-(+)-2-[[[3-(morpholinomethyl)-2H-chromen-8-yl]oxy]methyl] morpholine methane sulfonate
- p-[18F]MPPF
4-(2′-methoxyphenyl)-1-[2′-(N-2"-pyridinyl)-p-fluorobenzamido]-ethyl piperazine
- PNU109291
(S)-3,4-dihydro-1-[2-[4-(4-methoxyphenyl)-1-piperazinyl]ethyl]-N-methyl-1H-2-benzopyran-6-carboximide
- Ro600175
(S)-2-(6-chloro-5-fluroindol-1-yl)-1-methyethylamine
- Ro630563
4-amino-N-[2,6-bis(methylamino)pyridin-4-yl]benzenesulphonamide
- RP62203
2-[3-(4-(4-fluorophenyl)-piperazinyl)propyl]naphto[1,8- ca]isothiazole-1,1-dioxide
- RS57639
4-amino-5-chloro-2-methoxy benzoic acid 1-(3-[2,3-dihydrobenzo[1,4]dioxin-6yl)-propyl]-piperidin-4yl methyl ester
- RS67506
1-(4-amino-5-chloro-2-methoxyphenyl)-3-[1-(2-methyl sulphonylamino)ethyl-4-piperidinyl]-1-propanone hydrochloride
- RS100235
1-(8-amino-7-chloro-1,4-benzodioxan-5-yl)-5-((3-(3,4-dimethoxyphenyl)prop-1-yl)piperidin-4-yl)propan-1-one
- RS102221
8-[5-(5-amino 2,4-dimethoxyphenyl) 5-oxopentyl]-1,3,8-triazaspiro[4,5]decane-2,4-dione
- RS127445
(2-amino-4-(4-fluoronaphthyl-1-yl)-6-isopropylpyrimidine)
- SB204070
1-butyl-4-piperidinylmethyl-8-amino-7-chloro-1-4-benzoioxan-5-carboxylate
- SB207710
1-butyl-4-piperidinylmethyl-8-amino-7-iodo-1,4-benzodioxan-5-carboxylate
- SB224289
1′-methyl-5[[2′-methyl-4′-)5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4′-piperidine]oxalate
- SB236057
1′-ethyl-5-(2′-methyl-4′-(5-methyl-1,3,4-oxadiazol-2-yl)biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro[furo[2,3-f]indol3-3,4′-piperidine
- SB242084
6-chloro-5-methyl-1-[2-(2-methylpyridyl-3-oxy)-pyrid-5-yl carbamoyl] indoline
- SB258585
4-iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-benzenesulphonamide
- SB258719
(R)-3,N-dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzene sulphonamide
- SB269970
(R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulphonyl)phenol
- SB271046
5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulphonamide
- SB357134
N-(2,5-dibromo-3-flurophenyl)-4-methoxy-3-piperazin-1-ylbenzenesulphonamide
- SB-399885
N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide
- SB656104
6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride
- SB699551
3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4′-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride
- SB714786
2-methyl-5-({2-[4-(8-quinolinylmethyl)-1-piperazinyl]ethyl}oxy)quinoline
- U92016A
(+)-R)-2-cyano-N,N-dipropyl-8-amino-6,7,8,9-tetrahydro-3H-benz[e]indole
- UH301
5-fluoro-8-hydroxy-2-(dipropylamino) tetralin
- WAY100635
N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl)-cyclohexanecarboxamide trichloride
- WAY163909
(7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole
- WAY-181187
2-[1-(6-chloroimidazo[2,1-b]thiazol-5-ylsulfonyl)-1H-indol-3-yl]ethylamine
Further Reading
Barnes NM, Sharp T (1999). A review of central 5-HT receptors and their function. Neuropharmacology38: 1083–1152.
Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006). Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res326: 553–572.
Bockaert J, Claeysen S, Compan V, Dumuis A (2008). 5-HT4 receptors: history, molecular pharmacology and brain functions. Neuropharmacology55: 922–931.
Bojarski AJ (2006). Pharmacophore models for metabotropic 5-HT receptor ligands. Curr Top Med Chem 6:2005–2026.
Bonasera SJ, Tecott LH (2000). Mouse models of serotonin receptor function: toward a genetic dissection of serotonin systems. Pharmacol Ther88: 133–142.
Caliendo G, Santagada V, Perissutti E, Fiorino F. (2005). Derivatives as 5HT1A receptor ligands – past and present. Curr Med Chem12: 1721–1753.
Fink KB, Göthert M (2007). 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev59: 360–417.
Gershon MD (1999). Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther 13 (Suppl. 2): 15–30.
Glennon RA (2003). Higher-end serotonin receptors: 5-HT5, 5-HT6, and 5-HT7. J Med Chem46: 2795–812.
Hartig PR, Hoyer D, Humphrey PP, Martin GR (1996). Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci17: 103–105.
Heal DJ, Smith SL, Fisas A, Codony X, Buschmann H (2008). Selective 5-HT6 receptor ligands: progress in the development of a novel pharmacological approach to the treatment of obesity and related metabolic disorders. Pharmacol Ther117: 207–231.
Hoyer D, Martin G (1997). 5-HT receptor classification and nomenclature: towards a harmonization with the human genome Neuropharmacology36: 419–428.
Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ et al. (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev46: 157–203.
Hoyer D, Hannon JP, Martin GR (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav71: 533–554.
King MV, Marsden CA, Fone KC (2008). A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci29: 482–492.
Kitson SL (2007). 5-hydroxytryptamine (5-HT) receptor ligands. Curr Pharm Des13: 2621–2637.
Lanfumey L, Hamon M (2004). 5-HT1 receptors. Curr Drug Targets CNS Neurol Disord3: 1–10.
Leysen JE (2004). 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord3: 11–26.
Nelson DL (2004). 5-HT5 receptors. Curr Drug Targets CNS Neurol Disord3: 53–58.
Pauwels PJ (2000). Diverse signalling by 5-hydroxytryptamine (5-HT) receptors. Biochem Pharmacol60: 1743–1750.
Ramage AG, Villalón CM (2008). 5-Hydroxytryptamine and cardiovascular regulation. Trends Pharmacol Sci29: 472–481
Sanger GJ (2008). 5-hydroxytryptamine and the gastrointestinal tract: where next? Trends Pharmacol Sci29: 465–471.
Thomas DR (2006). 5-ht5A receptors as a therapeutic target. Pharmacol Ther111: 707–714.
Thomas DR, Hagan JJ (2004). 5-HT7 receptors. Curr Drug Targets CNS Neurol Disord3: 81–90.
Villalón CM, Centurión D (2007). Cardiovascular responses produced by 5-hydroxytryptamine: a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Arch Pharmacol376: 45–63.
Werry TD, Loiacono R, Sexton PM, Christopoulos A (2008). RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther119: 7–23.
Woolley ML, Marsden CA, Fone KC (2004). 5-ht6 receptors. Curr Drug Targets CNS Neurol Disord3: 59–79.
References
- Boess FG, et al. Mol Pharmacol. 1998;54:577–583. doi: 10.1124/mol.54.3.577. [DOI] [PubMed] [Google Scholar]
- Bonhaus DW, et al. Neuropharmacology. 1997;36:671–679. doi: 10.1016/s0028-3908(97)00039-7. [DOI] [PubMed] [Google Scholar]
- Bromidge SM, et al. Bioorg Med Chem Lett. 2001;11:55–58. doi: 10.1016/s0960-894x(00)00597-7. [DOI] [PubMed] [Google Scholar]
- Brown AM, et al. Br J Pharmacol. 1993;110:10P. [Google Scholar]
- Dunlop J, et al. J Pharmacol Exp Ther. 2005;313:862–869. doi: 10.1124/jpet.104.075382. [DOI] [PubMed] [Google Scholar]
- Eglen RM, et al. Br J Pharmacol. 1995;115:1387–1392. doi: 10.1111/j.1476-5381.1995.tb16628.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ennis MD, et al. J Med Chem. 1998;41:2180–2183. doi: 10.1021/jm980137o. [DOI] [PubMed] [Google Scholar]
- Forbes IT, et al. Bioorg Med Chem Lett. 2002;12:3341–3344. doi: 10.1016/s0960-894x(02)00690-x. [DOI] [PubMed] [Google Scholar]
- Harada K, et al. Eur J Pharmacol. 2006;553:171–184. doi: 10.1016/j.ejphar.2006.09.042. [DOI] [PubMed] [Google Scholar]
- Hirst WD, et al. Br J Pharmacol. 2000;130:1597–1605. doi: 10.1038/sj.bjp.0703458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirst WD, et al. Eur J Pharmacol. 2006;553:109–119. doi: 10.1016/j.ejphar.2006.09.049. [DOI] [PubMed] [Google Scholar]
- Holenz J, et al. J Med Chem. 2005;48:1781–1795. doi: 10.1021/jm049615n. [DOI] [PubMed] [Google Scholar]
- Khawaja X, et al. Life Sci. 1997;60:653–665. doi: 10.1016/s0024-3205(96)00701-1. [DOI] [PubMed] [Google Scholar]
- Malgouris C, et al. Eur J Pharmacol. 1993;233:37–45. doi: 10.1016/0014-2999(93)90346-j. [DOI] [PubMed] [Google Scholar]
- Middlemiss DN, et al. Eur J Pharmacol. 1999;375:359–365. doi: 10.1016/s0014-2999(99)00262-9. [DOI] [PubMed] [Google Scholar]
- Noda M, et al. J Neurochem. 2003;84:222–232. doi: 10.1046/j.1471-4159.2003.01518.x. [DOI] [PubMed] [Google Scholar]
- Phebus LA, et al. Life Sci. 1997;61:2117–2126. doi: 10.1016/s0024-3205(97)00885-0. [DOI] [PubMed] [Google Scholar]
- Schechter LE, et al. Neuropsychopharmacology. 2008;33:1323–1335. doi: 10.1038/sj.npp.1301503. [DOI] [PubMed] [Google Scholar]
- Thomas DR, et al. Br J Pharmacol. 2000;130:409–417. doi: 10.1038/sj.bjp.0703318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomsen WJ, et al. J Pharmacol Exp Ther. 2008;325:577–587. doi: 10.1124/jpet.107.133348. [DOI] [PubMed] [Google Scholar]
- Wurch T, et al. Mol Pharmacol. 1998;54:1088–1096. doi: 10.1124/mol.54.6.1088. [DOI] [PubMed] [Google Scholar]
- Xie Z, et al. FEBS Lett. 1999;456:63–67. doi: 10.1016/s0014-5793(99)00918-7. [DOI] [PubMed] [Google Scholar]
