Overview: Melatonin receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on melatonin receptors, see Dubocovich et al., 1998; 2000) are activated by the endogenous ligands melatonin and N-acetylserotonin.
| Nomenclature | MT1 | MT2 |
|---|---|---|
| Other names | MEL1A, ML1A, Mel1a | MEL1B, ML1B, Mel1b |
| Ensembl ID | ENSG00000168412 | ENSG00000134640 |
| Principal transduction | Gi/o | Gi/o |
| Selective agonists | – | IIK7 (Sugden et al., 1999), 5-methoxyluzindole (Dubocovich et al., 1998) |
| Selective antagonists | – | K185 (9.3, Sugden et al., 1999), 4P-PDOT (8.8, Dubocovich et al., 1997; Dubocovich et al., 1998), DH97 (8.0, Teh and Sugden, 1998) |
| Probes | [3H]-melatonin (Browning et al., 2000) | [3H]-melatonin (Browning et al., 2000) |
Melatonin, 2-iodo-melatonin, S20098, GR196429, LY156735 and TAK375 (Kato et al., 2005) are non-selective agonists for MT1 and MT2 receptors. 2-Iodo-[125I]-melatonin can be used to label all three melatonin receptor subtypes. (-)-AMMTC displays an ∼400-fold greater agonist potency than (+)-AMMTC at rat MT1 receptors (Ting et al., 1999). Luzindole is a non-selective melatonin receptor antagonist with some selectivity for the MT2 receptor (Dubocovich et al., 1998). MT1/MT2 heterodimers present different pharmacological profiles from MT1 and MT2 receptors (Ayoub et al., 2004).
The MT3 binding site of hamster kidney, also termed the Mel2 receptor, which binds 2-iodo-[125I]-5MCA-NAT (Molinari et al., 1996), was identified as the hamster homologue of human quinone reductase 2 (ENSG00000124588, Nosjean et al., 2000; Nosjean et al., 2001). Pharmacological investigations of MT3 binding sites have primarily been conducted in hamster and guinea-pig tissues. At this site, N-acetylserotonin (Eison and Mullins, 1993; Popova and Dubocovich, 1995; Molinari et al., 1996; Lucchelli et al., 1997) and 5MCA-NAT (Popova and Dubocovich, 1995) appear to function as agonists, while prazosin (Lucchelli et al., 1997) functions as an antagonist. A suggested physiological function of the MT3 receptor is in the control of intraocular pressure in rabbits (Pintor et al., 2003). Xenopus melanophores and chick brain express a distinct receptor (x420, P49219; c346, P49288, initially termed Mel1C) coupled to the Gi/o family of G proteins, for which GPR50 has recently been suggested to be a mammalian counterpart (see Dufourny et al., 2008).
Glossary
Abbreviations:
- 4P-PDOT
4-phenyl-2-propionamidotetraline
- 5MCA-NAT
5-methoxy-carbonylamino-N-acetyltryptamine
- AMMTC
N-acetyl-4-aminomethyl-6-methoxy-9-methyl-1,2,3,4-tetrahydrocarbazole
- DH97
2-benzyl-N-pentanoyltryptamine
- GR196429
N-(2-[2,3,7,8-tetrahydro-1H-furo(2,3-g)indol-1-yl]ethyl)acetamide
- IIK7
N-butanoyl-2-(2-methoxy-6H-isoindolo [2,1-a]indol-11-yl)ethanamine
- K185
N-butanoyl-2-(5,6,7-trihydro-11-methoxybenzo[3,4]cyclohept[2,1-a]indol-13-yl)ethanamine
- LY156735
β-methyl-6-chloromelatonin
- S20098
N-(2-[7-methoxy-1-naphthalenyl]ethyl)acetamide
- TAK375
(S)-N-[2(1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl)ethyl]propionamide
Further Reading
Alarma-Estrany P, Pintor J (2007). Melatonin receptors in the eye: location, second messengers and role in ocular physiology. Pharmacol Ther113: 507–522.
Ambriz-Tututi M, Rocha-Gonzalez HI, Cruz SL, Granados-Soto V (2009). Melatonin: a hormone that modulates pain. Life Sci84: 489–498.
Dubocovich ML, Cardinali DP, Guardiola-Lemaitre B, Hagan RM, Krause DN, Sugden D, et al. (1998). Melatonin receptors. In: Girdlestone D (ed.). The IUPHAR Compendium of Receptor Characterization and Classification. IUPHAR Media: London, pp. 187–193.
Dubocovich ML, Cardinali DP, Delagrange PRM, Krause DN, Strosberg D, Sugden D, et al. (2000). Melatonin Receptors. In: Girdlestone D (ed.). The IUPHAR Compendium of Receptor Characterization and Classification, 2nd edn. IUPHAR Media: London, pp. 270–277.
Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI (2003). Molecular pharmacology, regulation and function of mammalian melatonin receptors. Frontiers in Bioscience8: d1093–d1108.
Dufourny L, Levasseur A, Migaud M, Callebaut I, Pontarotti P, Malpaux B et al. (2008). GPR50 is the mammalian ortholog of Mel1c: evidence of rapid evolution in mammals. BMC Evol Biol8: 105.
Falcon J, Besseau L, Sauzet S, Boeuf G (2007). Melatonin effects on the hypothalamo-pituitary axis in fish. Trends Endocrinol Metab18: 81–88.
Hardeland R (2008). Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci65: 2001–2018.
Jockers R, Maurice P, Boutin JA, Delagrange P (2008). Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new? Br J Pharmacol154: 1182–1195.
Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R (2006). Melatonin: Nature's most versatile biological signal? FEBS J273: 2813–2838.
Slominski A, Tobin DJ, Zmijewski MA, Wortsman J, Paus R (2008). Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol Metab19: 17–24.
References
- Ayoub MA, et al. Mol Pharmacol. 2004;66:312–321. doi: 10.1124/mol.104.000398. [DOI] [PubMed] [Google Scholar]
- Browning C, et al. Br J Pharmacol. 2000;129:877–886. doi: 10.1038/sj.bjp.0703130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubocovich ML, et al. Naunyn Schmiedebers Arch Pharmacol. 1997;355:365–375. doi: 10.1007/pl00004956. [DOI] [PubMed] [Google Scholar]
- Dubocovich ML, et al. FASEB J. 1998;12:1211–1220. doi: 10.1096/fasebj.12.12.1211. [DOI] [PubMed] [Google Scholar]
- Eison AS, Mullins UL. Life Sci. 1993;53:L393–L398. doi: 10.1016/0024-3205(93)90494-n. [DOI] [PubMed] [Google Scholar]
- Kato K, et al. Neuropharmacology. 2005;48:301–310. doi: 10.1016/j.neuropharm.2004.09.007. [DOI] [PubMed] [Google Scholar]
- Lucchelli A, et al. Br J Pharmacol. 1997;121:1775–1781. doi: 10.1038/sj.bjp.0701287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molinari EJ, et al. Eur J Pharmacol. 1996;301:159–168. doi: 10.1016/0014-2999(95)00870-5. [DOI] [PubMed] [Google Scholar]
- Nosjean O, et al. J Biol Chem. 2000;275:31311–31317. doi: 10.1074/jbc.M005141200. [DOI] [PubMed] [Google Scholar]
- Nosjean O, et al. Biochem Pharmacol. 2001;61:1369–1379. doi: 10.1016/s0006-2952(01)00615-3. [DOI] [PubMed] [Google Scholar]
- Pintor J, et al. Br J Pharmacol. 2003;138:831–836. doi: 10.1038/sj.bjp.0705118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popova JS, Dubocovich ML. J Neurochem. 1995;64:130–138. doi: 10.1046/j.1471-4159.1995.64010130.x. [DOI] [PubMed] [Google Scholar]
- Sugden D, et al. Reprod Nutr Dev. 1999;39:335–344. doi: 10.1051/rnd:19990306. [DOI] [PubMed] [Google Scholar]
- Teh MT, Sugden D. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:522–528. doi: 10.1007/pl00005288. [DOI] [PubMed] [Google Scholar]
- Ting KN, et al. Br J Pharmacol. 1999;127:987–995. doi: 10.1038/sj.bjp.0702612. [DOI] [PMC free article] [PubMed] [Google Scholar]
