Overview: Muscarinic acetylcholine receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Muscarinic Acetylcholine Receptors, Caulfield and Birdsall, 1998) are 7TM receptors of the rhodopsin-like family where the endogenous agonist is acetylcholine. In addition to the agents listed in the table, AC-42, its structural analogues AC-260584 and 77-LH-28-1, desmethylclozapine and TBPB have been described as selective agonists of the M1 receptor subtype via binding in a mode distinct from that utilized by non-selective agonists (Spalding et al., 2002; 2006; Sur et al., 2003; Langmead et al., 2006; 2008; May et al., 2007; Jones et al., 2008). There are two allosteric sites on muscarinic receptors, one defined by it binding gallamine, strychnine and brucine, and the other binds KT5720, WIN62,577, WIN51,708 and staurosporine (Lazareno et al., 2000; 2002;). There are selective enhancers of acetylcholine binding and action: brucine, KT5720, VU0090157 and VU0029767 at M1 receptors, PG135 at M2 receptors, N-chloromethylbrucine and WIN62,577 at M3 receptors, thiochrome, LY2033298, VU0152099 and VU0152100 at M4 receptors and VU0238429 at M5 receptors (Birdsall and Lazareno, 2005; Brady et al., 2008; Chan et al., 2008; Shirey et al., 2008; Bridges et al., 2009; Marlo et al., 2009). LY2033298 has also been suggested to activate the M4 receptor directly via an allosteric site (Nawaratne et al., 2008). The allosteric site for gallamine and strychnine on M2 receptors can be labelled by [3H]dimethyl-W84 (Tränkle et al., 2003). McN-A-343 is a functionally selective partial agonist that appears to interact in a bitopic mode with both the orthosteric and an allosteric site on the M2 muscarinic receptor (Valant et al., 2008). THRX160209, hybrid 1 and hybrid 2, are multivalent ligands that also achieve selectivity for M2 receptors by binding both to the orthosteric and a nearby allosteric site (Steinfeld et al., 2007; Antony et al., 2009). VU0255035 is a recently described competitive antagonist with selectivity for the M1 receptor (Sheffler et al., 2009).
| Nomenclature | M1 | M2 | M3 |
|---|---|---|---|
| Ensembl ID | ENSG00000168539 | ENSG00000181072 | ENSG00000133019 |
| Principal transduction | Gq/11 | Gi/o | Gq/11 |
| Antagonists (pKi) | MT7 (10.9–11.0), 4-DAMP (9.2), tripitramine (8.8), darifenacin (8.3), pirenzepine (6.3–8.3), VU0255035 (7.8), guanylpirenzepine (7.7), AFDX384 (7.3–7.5), MT3 (6.5–7.1), himbacine (6.7–7.1), AFDX116 (6.2) | tripitramine (9.6), AFDX384 (8.0–9.0), 4-DAMP (8.3), himbacine (7.9–8.4), darifenacin (7.3–7.6), AFDX116 (6.7–7.3), VU0255035 (6.2), pirenzepine (4.9–6.4), MT3 (<6), guanylpirenzepine (5.6), MT7 (<5) | 4-DAMP (9.3), darifenacin (9.1), AFDX384 (7.2–7.8), tripitramine (7.1–7.4), himbacine (6.9–7.2), pirenzepine (5.6–6.7), guanylpirenzepine (6.5), VU0255035 (6.1), AFDX116 (6.1), MT3 (<6), MT7 (<5) |
| Probes (KD) | [3H]NMS (80–150 pM), [3H]QNB (15–60 pM), [3H]pirenzepine (3–15 nM), (R,R)-quinuclidinyl-4-[18F]-fluoromethyl-benzilate (PET ligand), [11C]xanomeline (PET ligand), [11C]butylthio-TZTP (PET ligand) | [3H]NMS (200–400 pM), [3H]QNB (20–50 pM), [18F]FP-TZTP (PET ligand) | [3H]NMS (150–250 pM), [3H]QNB (30–90 pM), [3H]darifenacin (300 pM) |
| Nomenclature | M4 | M5 |
|---|---|---|
| Ensembl ID | ENSG00000180720 | ENSG00000184984 |
| Principal transduction | Gi/o | Gq/11 |
| Antagonists (pKi) | 4-DAMP (8.9), MT3 (8.7), AFDX384 (8.0–8.7), AFDX116 (7–8.7), himbacine (7.9–8.2), tripitramine (7.8–8.2), darifenacin (8.1), pirenzepine (5.9–7.6), guanylpirenzepine (6.5), VU0255035 (5.9), MT7 (<5) | 4-DAMP (9.0), darifenacin (8.6), tripitramine (7.3–7.5), guanylpirenzepine (6.8), pirenzepine (6.2–6.9), himbacine (5.4–6.5), AFDX384 (6.3), AFDX116 (5.3–5.6), VU0255035 (5.6), MT3 (<6), MT7 (<5) |
| Probes (KD) | [3H]NMS (50–100 pM), [3H]QNB (20–80 pM) | [3H]NMS (500–700 pM), [3H]QNB (20–60 pM) |
Antagonist data tabulated are pKi values determined for human recombinant receptors. MT3 (m4-toxin) and MT7 (m1-toxin1) are toxins contained with the venom of the Eastern green mamba (Dendroaspis augusticeps) (see Potter et al., 2004; Servent and Fruchart-Gaillard, 2009).
Glossary
Abbreviations:
- 77-LH-28-1
1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone
- 4-DAMP
4-diphenylacetoxy-N-methylpiperidine methiodide
- AC-42
4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride
- AC-260584
4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one
- AFDX116 (otenzepad)
1-[2-[2-(diethylaminomethyl)piperidin-1-yl]acetyl]-5H-pyrido[2,3-b][1,4]benozodiazepin-6-one
- AFDX384
(±)-5,11-dihydro-11-([(2-[2-[dipropylamino)methyl]-1-piperidinyl)ethyl)amino)carbonyl)-6H-pyrido[2,3-b](1,4)benzodiazepine-6-one
- Butylthio-TZTP
butylthio-thiadiazolyltetrahydro-1-methyl-pyridine
- Dimethyl-W84
N,N′-bis[3-(1,3-dihydro-1,3-dioxo-4-methyl-2H-isoindol-2-yl)propyl]-N,N,N′,N′-tetramethyl-1,6-hexanediaminium diiodide
- FP-TZTP
[3-(3-(3-Fluoropropyl)thio)-1,2,5-thiadiazol-4-yl]-1,2,5,6-tetrahydro-1-methylpyridine
- Hybrid 1M
2-{3-[1-(6-{1,1-dimethyl-1-[4-(isoxazol-3-yloxy)but-2-ynyl]-ammonium}hexyl)-1,1 dimethylammonio]propyl}isoindoline-1,3-dione dibromide
- Hybrid 2
2-{3-[1-(6-{1,1-dimethyl-1-[4-(isoxazol-3-yloxy)but-2-ynyl]-ammonium}hexyl)-1,1-dimethylammonio]-2,2-dimethylpropyl}-benzo[de]isoquinoline-1,3-dione dibromide
- KT5720
(9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid hexyl ester
- LY2033298
3-amino-5-chloro-6-methoxy-4-methyl-thieno(2,3-b)pyridine-2-carboxylic acid cyclopropylamide
- McN-A-343
4-(3-chlorophenyl) carbamoyloxy)-2-butynyltrimethyl ammonium chloride
- NMS
N-methylscopolamine
- PG135
(3aS,12R,12aS,12bR)-2-amino-2,3,3a,4,11,12a,12b-octahydro-10-hydroxyisoquino[2,1,8-lma]carbazol-5(1H)-one hydrochloride
- QNB
3-quinuclidinylbenzilate
- TBPB
1-(1′-2-methylbenzyl)-1,4′-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one
- THRX160209
4-{N-[7-(3-(S)-(1-carbamoyl-1,1-diphenylmethyl)pyrrolidin-1-yl)hept-1-yl]-N-(n-propyl)amino}-1-(2,6-dimethoxy-benzyl)piperidine
- VU0029767
(E)-2-(4-ethoxyphenylamino)-N′-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide
- VU0090157
cyclopentyl 1,6-dimethyl-4-(6-nitrobenzo[d][1,3]-dioxol-5-yl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate
- VU0152099
3-amino-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide
- VU0152100
3-amino-N-(4-methoxybenzyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide
- VU0238429
structure not available
- VU0255035
N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide
- WIN51,708
17-β-hydroxy-17-α-ethynyl-5-α-androstano[3,2-b]pyrimido[1,2-a]benzimidazole
- WIN62,577
17-β-hydroxy-17-α-ethynyl-Δ4-androstano[3,2-b]pyrimido[1,2-a]benzimidazole
Further Reading
Abrams P, Andersson KE, Buccafusco JI, Chapple C, De Groat WC, Fryer AD et al. (2006). Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol148: 565–578.
Birdsall NJM, Lazareno S. (2005). Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem5: 523–543.
Caulfield MP, Birdsall NJM (1998). International Union of Pharmacology. XVII Classification of muscarinic acetylcholine receptors. Pharmacol. Rev50: 279–290.
Conn PJ, Christopoulos A, Lindsley CW (2009). Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov8: 41–54.
Conn PJ, Jones CK, Lindsley CW (2009). Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci30: 148–155.
De Amici M, Dallanoce C, Holzgrabe U, Tränkle C, Mohr K (2009). Allosteric ligands for G protein-coupled receptors: A novel strategy with attractive therapeutic opportunities. Med Res Rev Jun 25. [Epub ahead of print].
Eckelman WC (2006). Imaging of muscarinic receptors in the central nervous system. Curr Pharm Des12: 3901–3913.
Eglen RM (2005). Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem43: 105–136.
Eglen RM (2006). Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol26: 219–233.
Gregory KJ, Sexton PM, Christopoulos A (2007). Allosteric modulation of muscarinic acetylcholine receptors. Curr Neuropharmacol5: 157–167.
Holzgrabe U, De Amici M, Mohr K (2006). Allosteric modulators and selective agonists of muscarinic receptors. J Mol Neurosci30: 165–168.
Ishii M, Kurachi Y (2006). Muscarinic acetylcholine receptors. Curr Pharm Des12: 3573–3581.
Langmead CJ, Watson J, Reavill C (2008). Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther117: 232–243.
Nathanson NM (2008). Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther119: 33–43.
Peretto I, Petrillo P, Imbimbo BP (2009). Medicinal chemistry and therapeutic potential of muscarinic M3 antagonists. Med Res Rev29: 867–902.
Potter LT, Flynn DD, Liang JS, McCollum MH (2004). Studies of muscarinic neurotransmission with antimuscarinic toxins. Prog Brain Res145: 121–128.
Servent D, Fruchart-Gaillard C (2009). Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors. J Neurochem109: 1193–1202.
Tobin G, Giglio D, Lundgren O (2009) Muscarinic receptor subtypes in the alimentary tract. J Physiol Pharmacol60: 3–21.
Valant C, Sexton PM, Christopoulos A (2009) Orthosteric/allosteric bitopic ligands: Going hybrid at GPCRs. Mol Int9: 125–135.
Wess J, Eglen RM, Gautam D (2007). Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov6: 721–733.
References
- Antony J, et al. FASEB J. 2009;23:442–450. doi: 10.1096/fj.08-114751. [DOI] [PubMed] [Google Scholar]
- Brady AE, et al. J Pharmacol Exp Ther. 2008;327:941–953. doi: 10.1124/jpet.108.140350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridges TM, et al. J Med Chem. 2009;52:3445–3448. doi: 10.1021/jm900286j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan WY, et al. Proc Natl Acad Sci USA. 2008;105:10978–10983. doi: 10.1073/pnas.0800567105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones CK, et al. J Neurosci. 2008;28:10422–10433. doi: 10.1523/JNEUROSCI.1850-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langmead CJ, et al. Mol Pharmacol. 2006;69:236–246. doi: 10.1124/mol.105.017814. [DOI] [PubMed] [Google Scholar]
- Langmead CJ, et al. Br J Pharmacol. 2008;154:1104–1115. doi: 10.1038/bjp.2008.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazareno S, et al. Mol Pharmacol. 2000;58:194–207. doi: 10.1124/mol.58.1.194. [DOI] [PubMed] [Google Scholar]
- Lazareno S, et al. Mol Pharmacol. 2002;62:1492–1505. doi: 10.1124/mol.62.6.1492. [DOI] [PubMed] [Google Scholar]
- May LT, et al. Mol Pharmacol. 2007;72:463–476. doi: 10.1124/mol.107.037630. [DOI] [PubMed] [Google Scholar]
- Marlo JE, et al. Mol Pharmacol. 2009;75:577–588. doi: 10.1124/mol.108.052886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nawaratne V, et al. Mol. Pharmacol. 2008;74:1119–1131. doi: 10.1124/mol.108.049353. [DOI] [PubMed] [Google Scholar]
- Sheffler DJ, et al. Mol Pharmacol. 2009;76:356–368. doi: 10.1124/mol.109.056531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirey JK, et al. Nat Chem Biol. 2008;4:42–50. doi: 10.1038/nchembio.2007.55. [DOI] [PubMed] [Google Scholar]
- Spalding TA, et al. Mol Pharmacol. 2002;61:1297–1302. doi: 10.1124/mol.61.6.1297. [DOI] [PubMed] [Google Scholar]
- Spalding TA, et al. Mol Pharmacol. 2006;70:1974–1983. doi: 10.1124/mol.106.024901. [DOI] [PubMed] [Google Scholar]
- Steinfeld T, et al. Mol Pharmacol. 2007;72:291–302. doi: 10.1124/mol.106.033746. [DOI] [PubMed] [Google Scholar]
- Sur C, et al. Proc Natl Acad Sci USA. 2003;100:13674–13679. doi: 10.1073/pnas.1835612100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tränkle C, et al. Mol Pharmacol. 2003;64:180–190. doi: 10.1124/mol.64.1.180. [DOI] [PubMed] [Google Scholar]
- Valant C, et al. J Biol Chem. 2008;283:29312–29321. doi: 10.1074/jbc.M803801200. [DOI] [PMC free article] [PubMed] [Google Scholar]
