Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2009 Nov;158(Suppl 1):S190–S191. doi: 10.1111/j.1476-5381.2009.00505_5.x

GABA transporters

PMCID: PMC2884609

Overview: Plasma membrane-located GABA transporters (provisional nomenclature as adopted for human GABA transporters) are members of the solute carrier family 6 (SLC6) of sodium- and chloride-dependent neurotransmitter receptor transporters that includes the monoamine and glycine transporters (Chen et al., 2004). The members of this superfamily share a structural motif of 12 TM segments (Palacín et al., 1998) that has been confirmed by the crystal structure of a bacterial homolog (LeuTAa) of the Na+/Cl--dependent neurotransmitter transporters from Aquiflex aeolicus (Yamashita et al., 2005). The activity of GABA-transporters located upon both neurones and glia serves to terminate phasic GABA-ergic transmission, maintain low ambient extracellular concentrations of GABA and recycle GABA for reuse by neurones. Nonetheless, ambient concentrations of GABA are sufficient to sustain tonic inhibition mediated by high-affinity GABAA receptors in certain neuronal populations (Semyanov et al., 2004). A structurally and functionally distinct vesicular transporter representing the SCL32 family [VGAT/VIAAT (ENSG00000101438); McIntire et al., 1997; Sagne et al., 1997; Gasnier, 2004], subject to inhibition by vigabatrin, is responsible for concentrating GABA (and glycine) within synaptic vesicles.

Nomenclature GAT-1 GAT-2 GAT-3 BGT-1
Other names mGAT-1, SLC6A1 mGAT3, SLC6A16 mGAT4, GAT-B, SLC6A11 mGAT2, SLC6A12
Ensembl ID ENSG00000157103 ENSG00000010379 ENSG00000132164 ENSG00000111181
Endogenous substrates GABA GABA, β-alanine GABA, β-alanine GABA, betaine
Selective inhibitors (IC50) NNC-711 (0.04 µM), SKF89976A (0.13 µM), CI-966 (0.26 µM), tiagabine (0.8 µM), EF1500 (2 µM) (R)-EF1502 (4 µM), LU32176B (4 µM), (S)-EF1502 (120 µM) SNAP-5114 (6.6 µM) NNC052090 (1.4 µM), (R)-EF1502 (22 µM), (S)-EF1502 (34 µM), LU 32176B (>100 µM)
Probes [3H]Tiagabine
Stoichiometry 2 Na+: 1 Cl-: 1 GABA ≥2 Na+: 2 Cl-: 1 GABA 3 Na+: 1 (or 2) Cl-: 1 GABA

SNAP-5114 is only weakly selective for GAT-3, with IC50 values in the range 20 to >30 µM at GAT-1, GAT-2 and BGT-1, whereas NNC052090 has at least an order of magnitude selectivity for BGT-1 [see Schousboeet al. (2004a) and Clausen et al. (2006) for reviews]. (R)-(1-{2-[tris(4-methoxyphenyl)methoxy]ethyl}pyrrolidin-2-yl)acetic acid is a recently described compound that displays 20-fold selectivity for GAT-3 over GAT-1 (Fülep et al., 2006). In addition to the inhibitors listed, EGYT3886 is a moderately potent, although non-selective, inhibitor of all cloned GABA transporters (IC50= 26–46 µM; Dhar et al., 1994). Diaryloxime and diarylvinyl ether derivatives of nipecotic acid and guvacine that potently inhibit the uptake of [3H]GABA into rat synaptosomes have been described (Knutsen et al., 1999). Several derivatives of exo-THPO (e.g. N-methyl-exo-THPO and N-acetyloxyethyl-exo-THPO) demonstrate selectivity as blockers of astroglial, versus neuronal, uptake of GABA [see Schousboe et al. (2004b) and Clausen et al. (2006) for reviews]. GAT-3 is inhibited by physiologically relevant concentrations of Zn2+ (Cohen-Kfir et al., 2005).

Glossary

Abbreviations:

CI966

[1-[2-[bis-4(trifluromethyl)phenyl]methoxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid

EF1500

N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol

EF1502

N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)4,5,6,7,tetrabenzo[d]isoxazol-3-ol

EGYT3886

(-)-2-phenyl-2-[(dimethylamino)ethoxy]-(1R)-1,7,7-trimethylbicyclo[2.2.1]heptane; exo-THPO, 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol

LU32-176B

N-[4,4-bis(4-fluorophenyl)-butyl]-3-hydroxy-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol

NNC711

1-2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride

NNC052090

1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol

SKF89976A

1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid

Further Reading

Clausen RP, Madsen K, Larsson OM, Frolund B, Krogsgaard-Larsen P, Schousboe A (2006). Structure-activity relationship and pharmacology of gamma-aminobutyric acid (GABA) transport inhibitors. Adv Pharmacol54: 265–284.

Chen N-H, Reith MEA, Quick MW (2004). Synaptic uptake and beyond: the sodium and chloride dependent neurotransmitter transporter family SLC6. Pflügers Archiv447: 519–531.

Dalby NO (2003). Inhibition of gamma-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol479: 127–137.

Gadia A, Lopez-Colome AM (2001). Glial transporters for glutamate, glycine and GABA: II. GABA transporters. J Neurosci Res63: 461–468.

Gasnier B (2004). The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflügers Archiv447: 756–759.

Hog S, Greenwood JR, Madsen KB, Larsson OM, Frolund B, Schousboe A et al. (2006). Structure-activity relationships of selective GABA uptake inhibitors. Curr Top Med Chem6: 1861–1882.

Kanner BI (2006) Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol213: 89–100.

Kulig K, Szwaczkiewicz M (2008). The role of structure activity relationship studies in the search for new GABA uptake inhibitors. Mini Rev Med Chem8: 1214–1223.

Palacín M, Estévez R, Bertran J, Zorano A (1998). Molecular biology of mammalian plasma membrane amino acid transporters Physiol Rev78: 969–1054.

Richerson GB, Wu Y (2004). Role of the GABA transporter in epilepsy. Adv Exp Med Biol548: 76–91.

Sarup A, Larsson OM, Schousboe A (2003). GABA Transporters and GABA-Transaminase as Drug Targets. Curr Drug Target CNS Neurol Disord2: 269–277.

Schousboe A, Sarup A, Larsson OM, White HS (2004a). GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol68: 1557–1563.

Schousboe A, Sarup A, Bak LK, Waagepetersen HS, Larsson OM (2004b). Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int45: 521–527.

Semyanov A, Walker MC, Kullmann DM, Silver RA (2004). Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci27: 262–269.

Soudijn W, van Wijngaarden I (2000). The GABA transporter and its inhibitors. Curr Med Chem7: 1063–1079.

References

  1. Cohen-Kfir E, et al. Proc Natl Acad Sci USA. 2005;102:6154–6159. doi: 10.1073/pnas.0501431102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dhar TGM, et al. J Med Chem. 1994;37:2334–2342. doi: 10.1021/jm00041a012. [DOI] [PubMed] [Google Scholar]
  3. Fülep GH, et al. Eur J Med Chem. 2006;41:809–824. doi: 10.1016/j.ejmech.2006.01.019. [DOI] [PubMed] [Google Scholar]
  4. Knutsen LJS, et al. J Med Chem. 1999;42:3447–3462. doi: 10.1021/jm981027k. [DOI] [PubMed] [Google Scholar]
  5. McIntire SL, et al. Nature. 1997;38:870–876. doi: 10.1038/39908. [DOI] [PubMed] [Google Scholar]
  6. Sagne C, et al. FEBS Lett. 1997;417:177–183. doi: 10.1016/s0014-5793(97)01279-9. [DOI] [PubMed] [Google Scholar]
  7. Yamashita A, et al. Nature. 2005;437:215–223. doi: 10.1038/nature03978. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES