Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Dec;92(6):2653–2659. doi: 10.1172/JCI116881

Potent aquaretic agent. A novel nonpeptide selective vasopressin 2 antagonist (OPC-31260) in men.

A Ohnishi 1, Y Orita 1, R Okahara 1, H Fujihara 1, T Inoue 1, Y Yamamura 1, Y Yabuuchi 1, T Tanaka 1
PMCID: PMC288462  PMID: 8254021

Abstract

Solute-free water diuretics (aquaretics) by antagonizing hydrosmotic vasopressin receptors (V2) may be useful in treating water-retaining diseases. The effects of intravenous administration of a newly developed nonpeptide, selective V2 antagonist, OPC-31260, at doses ranging from 0.017 to 1.0 mg/kg to groups of healthy, normally hydrated men were compared with those of 0.33 mg/kg furosemide and placebo. OPC-31260 increased the hypotonic urine volume dose dependently for the first 4 h, while furosemide induced sodium diuresis for 2 h. The absolute increase in the cumulative response in the urine to the highest doses of OPC-31260 was not significantly different from that to furosemide. The higher doses of OPC-31260 rapidly lowered urine osmolality for 2 h, particularly between minutes 15 and 45 (e.g., 1.0-mg/kg dose: 63 +/- 2 mOsm/kg in urine collected between minutes 30 and 45). In a marked hypotonic diuresis, mean free water clearance of the 4-h urine increased dose proportionally into the positive range, reaching 1.80 +/- 0.21 ml/min at 1.0 mg/kg. Whereas furosemide induced marked Na and K diuresis, OPC-31260 increased urinary Na excretion only slightly. At 4 h, 0.75 and 1.0 mg/kg of OPC-31260 almost doubled the plasma arginine vasopressin; and the higher doses increased plasma osmolality and plasma Na slightly, but did not alter plasma K, blood pressure, or heart rate. OPC-31260 thus safely induced a potent aquaretic effect in men.

Full text

PDF
2653

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrightson-Winslow C. R., Caldwell N., Brooks D. P., Huffman W. F., Stassen F. L., Kinter L. B. Cyclooxygenase inhibition unmasks the full antidiuretic agonist activity of the vasopressin antagonist, SK&F 101926, in dogs. J Pharmacol Exp Ther. 1989 May;249(2):366–371. [PubMed] [Google Scholar]
  2. Bichet D., Szatalowicz V., Chaimovitz C., Schrier R. W. Role of vasopressin in abnormal water excretion in cirrhotic patients. Ann Intern Med. 1982 Apr;96(4):413–417. doi: 10.7326/0003-4819-96-4-413. [DOI] [PubMed] [Google Scholar]
  3. Brooks D. P., Koster P. F., Albrightson-Winslow C. R., Stassen F. L., Huffman W. F., Kinter L. B. SK&F 105494 is a potent antidiuretic hormone antagonist in the rhesus monkey (Macaca mulatta). J Pharmacol Exp Ther. 1988 Apr;245(1):211–215. [PubMed] [Google Scholar]
  4. Brooks D. P., Koster P. F., Albrightson C. R., Huffman W. F., Moore M. L., Stassen F. L., Schmidt D. B., Kinter L. B. Vasopressin receptor antagonism in rhesus monkey and man: stereochemical requirements. Eur J Pharmacol. 1989 Jan 24;160(1):159–162. doi: 10.1016/0014-2999(89)90666-3. [DOI] [PubMed] [Google Scholar]
  5. Goldsmith S. R., Francis G. S., Cowley A. W., Jr, Levine T. B., Cohn J. N. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol. 1983 Jun;1(6):1385–1390. doi: 10.1016/s0735-1097(83)80040-0. [DOI] [PubMed] [Google Scholar]
  6. Hofbauer K. G., Mah S. C., Opperman J. R. Chronic blockade of vasopressin receptors in rats. J Cardiovasc Pharmacol. 1986;8 (Suppl 7):S56–S60. doi: 10.1097/00005344-198600087-00011. [DOI] [PubMed] [Google Scholar]
  7. Huffman W. F., Albrightson-Winslow C., Brickson B., Bryan H. G., Caldwell N., Dytko G., Eggleston D. S., Kinter L. B., Moore M. L., Newlander K. A. A minor modification of residue 1 in potent vasopressin antagonists dramatically reduces agonist activity. J Med Chem. 1989 Apr;32(4):880–884. doi: 10.1021/jm00124a025. [DOI] [PubMed] [Google Scholar]
  8. Kinter L. B., Churchill S., Stassen F. L., Moore M., Huffman W. Vasopressin antagonism in the squirrel monkey (Saimiri sciureus). J Pharmacol Exp Ther. 1987 Jun;241(3):797–803. [PubMed] [Google Scholar]
  9. Manning M., Przybylski J. P., Olma A., Klis W. A., Kruszynski M., Wo N. C., Pelton G. H., Sawyer W. H. No requirements of cyclic conformation of antagonists in binding to vasopressin receptors. 1987 Oct 29-Nov 4Nature. 329(6142):839–840. doi: 10.1038/329839a0. [DOI] [PubMed] [Google Scholar]
  10. Manning M., Sawyer W. H. Discovery, development, and some uses of vasopressin and oxytocin antagonists. J Lab Clin Med. 1989 Dec;114(6):617–632. [PubMed] [Google Scholar]
  11. Ohnishi A., Ko Y., Fujihara H., Miyamoto G., Okada K., Odomi M. Pharmacokinetics, safety, and pharmacologic effects of OPC-21268, a nonpeptide orally active vasopressin V1 receptor antagonist, in humans. J Clin Pharmacol. 1993 Mar;33(3):230–238. doi: 10.1002/j.1552-4604.1993.tb03949.x. [DOI] [PubMed] [Google Scholar]
  12. Padfield P. L., Morton J. J. Effects of angiotensin II on arginine-vasopressin in physiological and pathological situations in man. J Endocrinol. 1977 Aug;74(2):251–259. doi: 10.1677/joe.0.0740251. [DOI] [PubMed] [Google Scholar]
  13. Reif M. C., Troutman S. L., Schafer J. A. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. J Clin Invest. 1986 Apr;77(4):1291–1298. doi: 10.1172/JCI112433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Robertson G. L., Mahr E. A., Athar S., Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. 1973 Sep;52(9):2340–2352. doi: 10.1172/JCI107423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robertson G. L., Shelton R. L., Athar S. The osmoregulation of vasopressin. Kidney Int. 1976 Jul;10(1):25–37. doi: 10.1038/ki.1976.76. [DOI] [PubMed] [Google Scholar]
  16. Sladek C. D., Blair M. L., Ramsay D. J. Further studies on the role of angiotensin in the osmotic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system. Endocrinology. 1982 Aug;111(2):599–607. doi: 10.1210/endo-111-2-599. [DOI] [PubMed] [Google Scholar]
  17. Stassen F. L., Erickson R. W., Huffman W. F., Stefankiewicz J., Sulat L., Wiebelhaus V. D. Molecular mechanisms of novel antidiuretic antagonists: analysis of the effects on vasopressin binding and adenylate cyclase activation in animal and human kidney. J Pharmacol Exp Ther. 1982 Oct;223(1):50–54. [PubMed] [Google Scholar]
  18. Szatalowicz V. L., Arnold P. E., Chaimovitz C., Bichet D., Berl T., Schrier R. W. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med. 1981 Jul 30;305(5):263–266. doi: 10.1056/NEJM198107303050506. [DOI] [PubMed] [Google Scholar]
  19. Thibonnier M. Vasopressin agonists and antagonists. Horm Res. 1990;34(3-4):124–128. doi: 10.1159/000181810. [DOI] [PubMed] [Google Scholar]
  20. Yamamura Y., Ogawa H., Chihara T., Kondo K., Onogawa T., Nakamura S., Mori T., Tominaga M., Yabuuchi Y. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist. Science. 1991 Apr 26;252(5005):572–574. doi: 10.1126/science.1850553. [DOI] [PubMed] [Google Scholar]
  21. Yamamura Y., Ogawa H., Yamashita H., Chihara T., Miyamoto H., Nakamura S., Onogawa T., Yamashita T., Hosokawa T., Mori T. Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist. Br J Pharmacol. 1992 Apr;105(4):787–791. doi: 10.1111/j.1476-5381.1992.tb09058.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES