Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2009 Nov;158(Suppl 1):S81. doi: 10.1111/j.1476-5381.2009.00501_51.x

P2Y

PMCID: PMC2884685

Overview: P2Y receptors (provisional nomenclature as agreed by NC-IUPHAR Subcommittee on P2Y Receptors, Abbracchio et al., 2003; 2006) are activated by the endogenous ligands ATP, ADP, UTP, UDP and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established, and so it might be appropriate to use wording such as ‘UTP-preferring (or ATP-, etc.) P2Y receptor’ or ‘P2Y1-like’, etc., until further, as yet undefined, corroborative criteria can be applied.

Nomenclature P2Y1 P2Y2 P2Y4 P2Y6
Ensembl ID ENSG00000169860 ENSG00000175591 ENSG00000 ENSG00000171361
Principal transduction Gq/11 Gq/11 Gq/11 Gq/11
Rank order of potency ADP > ATP UTP = ATP UTP > ATP (at rat recombinant receptors, UTP = ATP) UDP >> UTP > ATP
Selective agonists 2-MeSADP, ADPβS, MRS2365 (Bourdon et al., 2006) UTPγS (Lazarowski et al., 1996), Ap4A (Castro et al., 1992), 2-thioUTP (El-Tayeb et al., 2006) UTPγS (Lazarowski et al., 1996) UDP, 3-phenacylUDP (PSB0474, El-Tayeb et al., 2006)
Selective antagonists MRS2500 (8.8, Kim et al., 2003), MRS2279 (8.0, Waldo et al., 2002), MRS2179 (7.0, Boyer et al., 1996), PIT (6.8, Gao et al., 2004) ATP (6.2, Kennedy et al., 2000) MRS2578 (pIC50 7.4, Mamedova et al., 2004)
Probes [3H]-MRS2279 (8 nM, Waldo et al., 2002), [35S]-ADPβS, [35S]-ATPαS, [35S]-dATPαS
Nomenclature P2Y11 P2Y12 P2Y13 P2Y14
Other names P2YADP, P2T GPR86, GPR94, SP174 KIAAA00001, gpr105
Ensembl ID ENSG00000176130 ENSG00000169313 ENSG00000181631 ENSG00000174944
Principal transduction Gs, Gq/11 Gi/o Gi/o Gq/11
Rank order of potency ATP > UTP ADP >> ATP ADP >> ATP UDP-glucose
Selective agonists ARC67085 (Communi et al., 1999), NAD+ (Moreschi et al., 2006), NAADP+ (Moreschi et al., 2008) ADP, 2-MeSADP MRS2690 (Ko et al., 2007)
Selective antagonists NF157 (Ullmann et al., 2005) ATP, ARL66096 (Humphries et al., 1995) MRS2211 (Kim et al., 2005)

ARC69931MX shows selectivity for P2Y12 and P2Y13 receptors compared with other P2Y receptors (Takasaki et al., 2001; Marteau et al., 2003). NF157 also has antagonist activity at P2X1 receptors (Ullmann et al., 2005). UDP has been reported to be an antagonist at the P2Y14 receptor (Fricks et al., 2008).

A 7TM orphan receptor suggested to be a ‘P2Y15’ receptor (Inbe et al., 2004) appears not to be a genuine nucleotide receptor (see Abbracchio et al., 2006), but rather responds to dicarboxylic acids (He et al., 2004). Further P2Y-like receptors have been cloned from non-mammalian sources; a clone from chick brain, termed a p2y3 receptor (ENSGALG00000017327), couples to the Gq/11 family of G proteins and shows the rank order of potency ADP > UTP > ATP = UDP (Webb et al., 1996a). In addition, human sources have yielded a clone with a preliminary identification of p2y5 (ENSG00000139679) and contradictory evidence of responses to ATP (King and Townsend-Nicholson, 2000; Webb et al., 1996b). This protein has recently been suggested to be receptor for lysophosphatidic acid (Pasternack et al., 2008; Yanagida et al., 2009), as has the clone clone termed p2y9 (LPA4, ENSG00000147149, Noguchi et al., 2003). The clone p2y7 (ENSG00000196943), originally suggested to be a P2Y receptor (Akbar et al., 1996), has been shown to encode a leukotriene receptor (Yokomizo et al., 1997). A P2Y receptor that was initially termed a p2y8 receptor (P79928) has been cloned from Xenopus laevis; it shows the rank order of potency ADPβS > ATP = UTP = GTP = CTP = TTP = ITP > ATPγS and elicits a Ca2+-dependent Cl- current in Xenopus oocytes (Bogdanov et al., 1997). The p2y10 clone (ENSG00000078589) lacks functional data. Diadenosine polyphosphates also have effects on as yet uncloned P2Y-like receptors with the rank order of potency of Ap4A > Ap5A > Ap3A, coupling via Gq/11 (Castro et al., 1992). P2Y-like receptors have recently been described on mitochondria (Belous et al., 2004). CysLT1 and CysLT2 leukotriene receptors respond to nanomolar concentrations of UDP, although they are activated principally by leukotrienes C4 and D4 (Mellor et al., 2001; 2003;); Human (ENSG00000144230) and rat GPR17, which are structurally related to CysLT and P2Y receptors, are also activated by leukotrienes as well as UDP and UDP-glucose (Ciana et al., 2006). Activity at the rat GPR17 is inhibited by submicromolar concentrations of MRS2179 and ARL69931 (Ciana et al., 2006).

Glossary

Abbreviations:

2-MeSADP

2-methylthio-adenosine-5′-diphosphate

2-MeSATP

2-methylthio-adenosine-5′-triphosphate

ARC67085

2-propylthio-βγ-dichloromethylene-ATP

ARC69931MX

N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-βγ-dichloromethylene-ATP, also known as cangrelor

ARL66096

2-propylthio-βγ-difluoromethylene ATP (previously FPL66096)

ATPγS

adenosine 5′-(3-thio)triphosphate

MRS2179

N6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate

MRS2211

pyridoxal-5′-phosphate-6-azo (2-chloro-5-nitrophenyl)-2,4-disulfonate

MRS2279

2-chloro-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate

MRS2365

(N)-methanocarba-2-MeSADP

MRS2500

N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5-bisphosphate

MRS2578

N,N′′-1,4-butanediyl bis(N′-[3-isothiocynatophenyl)] thiourea

MRS2690

2-thiouridine-5’-diphosphoglucose

NF157

8,8′-[carbonylbis[imino-3,1-phenylenecarbonylimino(4-fluoro-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalene trisulfonic acid hexasodium salt

PIT

2,2′-pyridylisatogen tosylate

Further Reading

Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT et al. (2003). Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci24: 52–55.

Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C et al. (2006). International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev58: 281–341.

Burnstock G (2007). Purine and pyrimidine receptors. Cell Mol Life Sci64: 1471–1483.

Burnstock G (2008). Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discovery7: 575–590.

Erlinge D, Burnstock G (2008). P2 receptors in cardiovascular regulation and disease. Purinergic Signal4: 1–20.

Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009). Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal5: 75–89.

References

  1. Akbar GKM, et al. J Biol Chem. 1996;271:18363–18367. doi: 10.1074/jbc.271.31.18363. [DOI] [PubMed] [Google Scholar]
  2. Belous A, et al. J Cell Biochem. 2004;92:1062–1073. doi: 10.1002/jcb.20144. [DOI] [PubMed] [Google Scholar]
  3. Bogdanov YD, et al. J Biol Chem. 1997;272:12583–12590. doi: 10.1074/jbc.272.19.12583. [DOI] [PubMed] [Google Scholar]
  4. Bourdon DM, et al. J Thromb Haemost. 2006;4:861–868. doi: 10.1111/j.1538-7836.2006.01866.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyer JL, et al. Mol Pharmacol. 1996;50:1323–1329. [PubMed] [Google Scholar]
  6. Castro E, et al. Br J Pharmacol. 1992;106:833–837. doi: 10.1111/j.1476-5381.1992.tb14421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ciana P, et al. EMBO J. 2006;25:4615–4627. doi: 10.1038/sj.emboj.7601341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Communi D, et al. Br J Pharmacol. 1999;128:1199–1206. doi: 10.1038/sj.bjp.0702909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. El-Tayeb A, et al. J Med Chem. 2006;102:7076–7087. doi: 10.1021/jm060848j. [DOI] [PubMed] [Google Scholar]
  10. Fricks IP, et al. J Pharmacol Exp Ther. 2008;325:588–594. doi: 10.1124/jpet.108.136309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gao ZG, et al. Biochem Pharmacol. 2004;68:231–237. doi: 10.1016/j.bcp.2004.02.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. He W, et al. Nature. 2004;429:188–193. doi: 10.1038/nature02488. [DOI] [PubMed] [Google Scholar]
  13. Humphries RG, et al. Br J Pharmacol. 1995;115:1110–1116. doi: 10.1111/j.1476-5381.1995.tb15925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inbe H, et al. J Biol Chem. 2004;279:19790–19799. doi: 10.1074/jbc.M400360200. [DOI] [PubMed] [Google Scholar]
  15. Kennedy C, et al. Mol Pharmacol. 2000;57:926–931. [PubMed] [Google Scholar]
  16. Kim HS, et al. J Med Chem. 2003;46:4974–4987. doi: 10.1021/jm030127+. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim YC, et al. Biochem Pharmacol. 2005;70:266–274. doi: 10.1016/j.bcp.2005.04.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. King BF, Townsend-Nicholson A. J Auton Nerv Syst. 2000;81:164–170. doi: 10.1016/s0165-1838(00)00134-x. [DOI] [PubMed] [Google Scholar]
  19. Ko H, et al. J Med Chem. 2007;50:2030–2039. doi: 10.1021/jm061222w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lazarowski ER, et al. Br J Pharmacol. 1996;117:203–209. doi: 10.1111/j.1476-5381.1996.tb15175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mamedova LK, et al. Biochem Pharmacol. 2004;67:1763–1770. doi: 10.1016/j.bcp.2004.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marteau F, et al. Mol Pharmacol. 2003;64:104–112. doi: 10.1124/mol.64.1.104. [DOI] [PubMed] [Google Scholar]
  23. Mellor EA, et al. Proc Natl Acad Sci USA. 2001;98:7964–7969. doi: 10.1073/pnas.141221498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mellor EA, et al. Proc Natl Acad Sci USA. 2003;100:11589–11593. doi: 10.1073/pnas.2034927100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moreschi I, et al. Biochem Biophys Res Commun. 2006;345:573–580. doi: 10.1016/j.bbrc.2006.04.096. [DOI] [PubMed] [Google Scholar]
  26. Moreschi I, et al. Cell Calcium. 2008;43:344–345. doi: 10.1016/j.ceca.2007.06.006. [DOI] [PubMed] [Google Scholar]
  27. Noguchi K, et al. J Biol Chem. 2003;278:25600–25606. doi: 10.1074/jbc.M302648200. [DOI] [PubMed] [Google Scholar]
  28. Pasternack SM, et al. Nat Genet. 2008;40:329–334. doi: 10.1038/ng.84. [DOI] [PubMed] [Google Scholar]
  29. Takasaki J, et al. Mol Pharmacol. 2001;60:432–439. [PubMed] [Google Scholar]
  30. Ullmann H, et al. J Med Chem. 2005;48:7040–7048. doi: 10.1021/jm050301p. [DOI] [PubMed] [Google Scholar]
  31. Waldo GL, et al. Mol Pharmacol. 2002;62:1249–1257. doi: 10.1124/mol.62.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Webb TE, et al. Mol Pharmacol. 1996a;50:258–265. [PubMed] [Google Scholar]
  33. Webb TE, et al. Biochem Biophys Res Commun. 1996b;219:105–110. doi: 10.1006/bbrc.1996.0189. [DOI] [PubMed] [Google Scholar]
  34. Yanagida K, et al. J Biol Chem. 2009;284:17731–17741. doi: 10.1074/jbc.M808506200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yokomizo T, et al. Nature. 1997;387:620–624. doi: 10.1038/42506. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES