Overview: P2Y receptors (provisional nomenclature as agreed by NC-IUPHAR Subcommittee on P2Y Receptors, Abbracchio et al., 2003; 2006) are activated by the endogenous ligands ATP, ADP, UTP, UDP and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established, and so it might be appropriate to use wording such as ‘UTP-preferring (or ATP-, etc.) P2Y receptor’ or ‘P2Y1-like’, etc., until further, as yet undefined, corroborative criteria can be applied.
| Nomenclature | P2Y1 | P2Y2 | P2Y4 | P2Y6 |
| Ensembl ID | ENSG00000169860 | ENSG00000175591 | ENSG00000 | ENSG00000171361 |
| Principal transduction | Gq/11 | Gq/11 | Gq/11 | Gq/11 |
| Rank order of potency | ADP > ATP | UTP = ATP | UTP > ATP (at rat recombinant receptors, UTP = ATP) | UDP >> UTP > ATP |
| Selective agonists | 2-MeSADP, ADPβS, MRS2365 (Bourdon et al., 2006) | UTPγS (Lazarowski et al., 1996), Ap4A (Castro et al., 1992), 2-thioUTP (El-Tayeb et al., 2006) | UTPγS (Lazarowski et al., 1996) | UDP, 3-phenacylUDP (PSB0474, El-Tayeb et al., 2006) |
| Selective antagonists | MRS2500 (8.8, Kim et al., 2003), MRS2279 (8.0, Waldo et al., 2002), MRS2179 (7.0, Boyer et al., 1996), PIT (6.8, Gao et al., 2004) | – | ATP (6.2, Kennedy et al., 2000) | MRS2578 (pIC50 7.4, Mamedova et al., 2004) |
| Probes | [3H]-MRS2279 (8 nM, Waldo et al., 2002), [35S]-ADPβS, [35S]-ATPαS, [35S]-dATPαS | – | – | – |
| Nomenclature | P2Y11 | P2Y12 | P2Y13 | P2Y14 |
| Other names | – | P2YADP, P2T | GPR86, GPR94, SP174 | KIAAA00001, gpr105 |
| Ensembl ID | ENSG00000176130 | ENSG00000169313 | ENSG00000181631 | ENSG00000174944 |
| Principal transduction | Gs, Gq/11 | Gi/o | Gi/o | Gq/11 |
| Rank order of potency | ATP > UTP | ADP >> ATP | ADP >> ATP | UDP-glucose |
| Selective agonists | ARC67085 (Communi et al., 1999), NAD+ (Moreschi et al., 2006), NAADP+ (Moreschi et al., 2008) | ADP, 2-MeSADP | – | MRS2690 (Ko et al., 2007) |
| Selective antagonists | NF157 (Ullmann et al., 2005) | ATP, ARL66096 (Humphries et al., 1995) | MRS2211 (Kim et al., 2005) | – |
ARC69931MX shows selectivity for P2Y12 and P2Y13 receptors compared with other P2Y receptors (Takasaki et al., 2001; Marteau et al., 2003). NF157 also has antagonist activity at P2X1 receptors (Ullmann et al., 2005). UDP has been reported to be an antagonist at the P2Y14 receptor (Fricks et al., 2008).
A 7TM orphan receptor suggested to be a ‘P2Y15’ receptor (Inbe et al., 2004) appears not to be a genuine nucleotide receptor (see Abbracchio et al., 2006), but rather responds to dicarboxylic acids (He et al., 2004). Further P2Y-like receptors have been cloned from non-mammalian sources; a clone from chick brain, termed a p2y3 receptor (ENSGALG00000017327), couples to the Gq/11 family of G proteins and shows the rank order of potency ADP > UTP > ATP = UDP (Webb et al., 1996a). In addition, human sources have yielded a clone with a preliminary identification of p2y5 (ENSG00000139679) and contradictory evidence of responses to ATP (King and Townsend-Nicholson, 2000; Webb et al., 1996b). This protein has recently been suggested to be receptor for lysophosphatidic acid (Pasternack et al., 2008; Yanagida et al., 2009), as has the clone clone termed p2y9 (LPA4, ENSG00000147149, Noguchi et al., 2003). The clone p2y7 (ENSG00000196943), originally suggested to be a P2Y receptor (Akbar et al., 1996), has been shown to encode a leukotriene receptor (Yokomizo et al., 1997). A P2Y receptor that was initially termed a p2y8 receptor (P79928) has been cloned from Xenopus laevis; it shows the rank order of potency ADPβS > ATP = UTP = GTP = CTP = TTP = ITP > ATPγS and elicits a Ca2+-dependent Cl- current in Xenopus oocytes (Bogdanov et al., 1997). The p2y10 clone (ENSG00000078589) lacks functional data. Diadenosine polyphosphates also have effects on as yet uncloned P2Y-like receptors with the rank order of potency of Ap4A > Ap5A > Ap3A, coupling via Gq/11 (Castro et al., 1992). P2Y-like receptors have recently been described on mitochondria (Belous et al., 2004). CysLT1 and CysLT2 leukotriene receptors respond to nanomolar concentrations of UDP, although they are activated principally by leukotrienes C4 and D4 (Mellor et al., 2001; 2003;); Human (ENSG00000144230) and rat GPR17, which are structurally related to CysLT and P2Y receptors, are also activated by leukotrienes as well as UDP and UDP-glucose (Ciana et al., 2006). Activity at the rat GPR17 is inhibited by submicromolar concentrations of MRS2179 and ARL69931 (Ciana et al., 2006).
Glossary
Abbreviations:
- 2-MeSADP
2-methylthio-adenosine-5′-diphosphate
- 2-MeSATP
2-methylthio-adenosine-5′-triphosphate
- ARC67085
2-propylthio-βγ-dichloromethylene-ATP
- ARC69931MX
N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-βγ-dichloromethylene-ATP, also known as cangrelor
- ARL66096
2-propylthio-βγ-difluoromethylene ATP (previously FPL66096)
- ATPγS
adenosine 5′-(3-thio)triphosphate
- MRS2179
N6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate
- MRS2211
pyridoxal-5′-phosphate-6-azo (2-chloro-5-nitrophenyl)-2,4-disulfonate
- MRS2279
2-chloro-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate
- MRS2365
(N)-methanocarba-2-MeSADP
- MRS2500
N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5-bisphosphate
- MRS2578
N,N′′-1,4-butanediyl bis(N′-[3-isothiocynatophenyl)] thiourea
- MRS2690
2-thiouridine-5’-diphosphoglucose
- NF157
8,8′-[carbonylbis[imino-3,1-phenylenecarbonylimino(4-fluoro-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalene trisulfonic acid hexasodium salt
- PIT
2,2′-pyridylisatogen tosylate
Further Reading
Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT et al. (2003). Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci24: 52–55.
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C et al. (2006). International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev58: 281–341.
Burnstock G (2007). Purine and pyrimidine receptors. Cell Mol Life Sci64: 1471–1483.
Burnstock G (2008). Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discovery7: 575–590.
Erlinge D, Burnstock G (2008). P2 receptors in cardiovascular regulation and disease. Purinergic Signal4: 1–20.
Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009). Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal5: 75–89.
References
- Akbar GKM, et al. J Biol Chem. 1996;271:18363–18367. doi: 10.1074/jbc.271.31.18363. [DOI] [PubMed] [Google Scholar]
- Belous A, et al. J Cell Biochem. 2004;92:1062–1073. doi: 10.1002/jcb.20144. [DOI] [PubMed] [Google Scholar]
- Bogdanov YD, et al. J Biol Chem. 1997;272:12583–12590. doi: 10.1074/jbc.272.19.12583. [DOI] [PubMed] [Google Scholar]
- Bourdon DM, et al. J Thromb Haemost. 2006;4:861–868. doi: 10.1111/j.1538-7836.2006.01866.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer JL, et al. Mol Pharmacol. 1996;50:1323–1329. [PubMed] [Google Scholar]
- Castro E, et al. Br J Pharmacol. 1992;106:833–837. doi: 10.1111/j.1476-5381.1992.tb14421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciana P, et al. EMBO J. 2006;25:4615–4627. doi: 10.1038/sj.emboj.7601341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Communi D, et al. Br J Pharmacol. 1999;128:1199–1206. doi: 10.1038/sj.bjp.0702909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- El-Tayeb A, et al. J Med Chem. 2006;102:7076–7087. doi: 10.1021/jm060848j. [DOI] [PubMed] [Google Scholar]
- Fricks IP, et al. J Pharmacol Exp Ther. 2008;325:588–594. doi: 10.1124/jpet.108.136309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao ZG, et al. Biochem Pharmacol. 2004;68:231–237. doi: 10.1016/j.bcp.2004.02.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He W, et al. Nature. 2004;429:188–193. doi: 10.1038/nature02488. [DOI] [PubMed] [Google Scholar]
- Humphries RG, et al. Br J Pharmacol. 1995;115:1110–1116. doi: 10.1111/j.1476-5381.1995.tb15925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inbe H, et al. J Biol Chem. 2004;279:19790–19799. doi: 10.1074/jbc.M400360200. [DOI] [PubMed] [Google Scholar]
- Kennedy C, et al. Mol Pharmacol. 2000;57:926–931. [PubMed] [Google Scholar]
- Kim HS, et al. J Med Chem. 2003;46:4974–4987. doi: 10.1021/jm030127+. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim YC, et al. Biochem Pharmacol. 2005;70:266–274. doi: 10.1016/j.bcp.2005.04.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King BF, Townsend-Nicholson A. J Auton Nerv Syst. 2000;81:164–170. doi: 10.1016/s0165-1838(00)00134-x. [DOI] [PubMed] [Google Scholar]
- Ko H, et al. J Med Chem. 2007;50:2030–2039. doi: 10.1021/jm061222w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarowski ER, et al. Br J Pharmacol. 1996;117:203–209. doi: 10.1111/j.1476-5381.1996.tb15175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mamedova LK, et al. Biochem Pharmacol. 2004;67:1763–1770. doi: 10.1016/j.bcp.2004.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marteau F, et al. Mol Pharmacol. 2003;64:104–112. doi: 10.1124/mol.64.1.104. [DOI] [PubMed] [Google Scholar]
- Mellor EA, et al. Proc Natl Acad Sci USA. 2001;98:7964–7969. doi: 10.1073/pnas.141221498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellor EA, et al. Proc Natl Acad Sci USA. 2003;100:11589–11593. doi: 10.1073/pnas.2034927100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreschi I, et al. Biochem Biophys Res Commun. 2006;345:573–580. doi: 10.1016/j.bbrc.2006.04.096. [DOI] [PubMed] [Google Scholar]
- Moreschi I, et al. Cell Calcium. 2008;43:344–345. doi: 10.1016/j.ceca.2007.06.006. [DOI] [PubMed] [Google Scholar]
- Noguchi K, et al. J Biol Chem. 2003;278:25600–25606. doi: 10.1074/jbc.M302648200. [DOI] [PubMed] [Google Scholar]
- Pasternack SM, et al. Nat Genet. 2008;40:329–334. doi: 10.1038/ng.84. [DOI] [PubMed] [Google Scholar]
- Takasaki J, et al. Mol Pharmacol. 2001;60:432–439. [PubMed] [Google Scholar]
- Ullmann H, et al. J Med Chem. 2005;48:7040–7048. doi: 10.1021/jm050301p. [DOI] [PubMed] [Google Scholar]
- Waldo GL, et al. Mol Pharmacol. 2002;62:1249–1257. doi: 10.1124/mol.62.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb TE, et al. Mol Pharmacol. 1996a;50:258–265. [PubMed] [Google Scholar]
- Webb TE, et al. Biochem Biophys Res Commun. 1996b;219:105–110. doi: 10.1006/bbrc.1996.0189. [DOI] [PubMed] [Google Scholar]
- Yanagida K, et al. J Biol Chem. 2009;284:17731–17741. doi: 10.1074/jbc.M808506200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokomizo T, et al. Nature. 1997;387:620–624. doi: 10.1038/42506. [DOI] [PubMed] [Google Scholar]
