Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Dec;92(6):2737–2745. doi: 10.1172/JCI116891

Reduced beta 1 receptor messenger RNA abundance in the failing human heart.

M R Bristow 1, W A Minobe 1, M V Raynolds 1, J D Port 1, R Rasmussen 1, P E Ray 1, A M Feldman 1
PMCID: PMC288472  PMID: 8254027

Abstract

Heart failure in humans is characterized by alterations in myocardial adrenergic signal transduction, the most prominent of which is down-regulation of beta 1-adrenergic receptors. We tested the hypothesis that down-regulation of beta 1-adrenergic receptors in the failing human heart is related to decreased steady-state levels of beta 1 receptor mRNA. Due to the extremely low abundance of beta 1 receptor mRNA, measurements were possible only by quantitative polymerase chain reaction (QPCR) or by RNase protection methods. Because the beta 1 receptor gene is intronless and beta 1 receptor mRNA abundance is low, QPCR yielded genomic amplification in total RNA, and mRNA measurements had to be performed in poly (A)(+)-enriched RNA. By QPCR the concentration of beta 1 receptor mRNA varied from 0.34 to 7.8 x 10(7) molecules/microgram poly(A)(+)-enriched RNA, and the assay was sensitive to 16.7 zeptomol. Using 100-mg aliquots of left ventricular myocardium obtained from organ donors (nonfailing ventricles, n = 12) or heart transplant recipients (failing ventricles, n = 13), the respective beta 1 mRNA levels measured by QPCR were 4.2 +/- 0.7 x 10(7)/micrograms vs. 2.10 +/- 0.3 x 10(7)/micrograms (P = 0.006). In these same nonfailing and failing left ventricles the respective beta 1-adrenergic receptor densities were 67.9 +/- 6.9 fmol/mg vs. 29.6 +/- 3.5 fmol/mg (P = 0.0001). Decreased mRNA abundance in the failing ventricles was confirmed by RNase protection assays in total RNA, which also demonstrated a 50% reduction in beta 1 message abundance. We conclude that down-regulation of beta 1 receptor mRNA contributes to down-regulation of beta 1 adrenergic receptors in the failing human heart.

Full text

PDF
2737

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouaboula M., Legoux P., Pességué B., Delpech B., Dumont X., Piechaczyk M., Casellas P., Shire D. Standardization of mRNA titration using a polymerase chain reaction method involving co-amplification with a multispecific internal control. J Biol Chem. 1992 Oct 25;267(30):21830–21838. [PubMed] [Google Scholar]
  2. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  3. Bristow M. R., Ginsburg R., Umans V., Fowler M., Minobe W., Rasmussen R., Zera P., Menlove R., Shah P., Jamieson S. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986 Sep;59(3):297–309. doi: 10.1161/01.res.59.3.297. [DOI] [PubMed] [Google Scholar]
  4. Bristow M. R., Minobe W., Rasmussen R., Larrabee P., Skerl L., Klein J. W., Anderson F. L., Murray J., Mestroni L., Karwande S. V. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest. 1992 Mar;89(3):803–815. doi: 10.1172/JCI115659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brodde O. E., Schüler S., Kretsch R., Brinkmann M., Borst H. G., Hetzer R., Reidemeister J. C., Warnecke H., Zerkowski H. R. Regional distribution of beta-adrenoceptors in the human heart: coexistence of functional beta 1- and beta 2-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol. 1986 Nov-Dec;8(6):1235–1242. doi: 10.1097/00005344-198611000-00021. [DOI] [PubMed] [Google Scholar]
  6. Brown L., Deighton N. M., Bals S., Söhlmann W., Zerkowski H. R., Michel M. C., Brodde O. E. Spare receptors for beta-adrenoceptor-mediated positive inotropic effects of catecholamines in the human heart. J Cardiovasc Pharmacol. 1992 Feb;19(2):222–232. doi: 10.1097/00005344-199202000-00011. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Dixon R. A., Kobilka B. K., Strader D. J., Benovic J. L., Dohlman H. G., Frielle T., Bolanowski M. A., Bennett C. D., Rands E., Diehl R. E. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature. 1986 May 1;321(6065):75–79. doi: 10.1038/321075a0. [DOI] [PubMed] [Google Scholar]
  9. Feldman A. M., Ray P. E., Bristow M. R. Expression of alpha-subunits of G proteins in failing human heart: a reappraisal utilizing quantitative polymerase chain reaction. J Mol Cell Cardiol. 1991 Dec;23(12):1355–1358. doi: 10.1016/0022-2828(91)90182-l. [DOI] [PubMed] [Google Scholar]
  10. Feldman A. M., Ray P. E., Silan C. M., Mercer J. A., Minobe W., Bristow M. R. Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation. 1991 Jun;83(6):1866–1872. doi: 10.1161/01.cir.83.6.1866. [DOI] [PubMed] [Google Scholar]
  11. Frielle T., Collins S., Daniel K. W., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7920–7924. doi: 10.1073/pnas.84.22.7920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gyllensten U. B., Erlich H. A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7652–7656. doi: 10.1073/pnas.85.20.7652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hadcock J. R., Malbon C. C. Down-regulation of beta-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5021–5025. doi: 10.1073/pnas.85.14.5021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hadcock J. R., Wang H. Y., Malbon C. C. Agonist-induced destabilization of beta-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced up-regulation of beta-adrenergic receptors. J Biol Chem. 1989 Nov 25;264(33):19928–19933. [PubMed] [Google Scholar]
  15. Hamill R. W., Woolf P. D., McDonald J. V., Lee L. A., Kelly M. Catecholamines predict outcome in traumatic brain injury. Ann Neurol. 1987 May;21(5):438–443. doi: 10.1002/ana.410210504. [DOI] [PubMed] [Google Scholar]
  16. Ladenson P. W., Sherman S. I., Baughman K. L., Ray P. E., Feldman A. M. Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5251–5255. doi: 10.1073/pnas.89.12.5251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lazar-Wesley E., Hadcock J. R., Malbon C. C., Kunos G., Ishac E. J. Tissue-specific regulation of alpha 1B, beta 1, and beta 2-adrenergic receptor mRNAs by thyroid state in the rat. Endocrinology. 1991 Aug;129(2):1116–1118. doi: 10.1210/endo-129-2-1116. [DOI] [PubMed] [Google Scholar]
  18. Lee J. J., Costlow N. A. A molecular titration assay to measure transcript prevalence levels. Methods Enzymol. 1987;152:633–648. doi: 10.1016/0076-6879(87)52070-5. [DOI] [PubMed] [Google Scholar]
  19. Murphree S. S., Saffitz J. E. Delineation of the distribution of beta-adrenergic receptor subtypes in canine myocardium. Circ Res. 1988 Jul;63(1):117–125. doi: 10.1161/01.res.63.1.117. [DOI] [PubMed] [Google Scholar]
  20. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  21. Shimomura H., Terada A. Primary structure of the rat beta-1 adrenergic receptor gene. Nucleic Acids Res. 1990 Aug 11;18(15):4591–4591. doi: 10.1093/nar/18.15.4591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sylvén C., Arner P., Hellström L., Jansson E., Sotonyi P., Somogyi A., Brönnegård M. Left ventricular beta 1 and beta 2 adrenoceptor mRNA expression in normal and volume overloaded human heart. Cardiovasc Res. 1991 Sep;25(9):737–741. doi: 10.1093/cvr/25.9.737. [DOI] [PubMed] [Google Scholar]
  23. Ungerer M., Böhm M., Elce J. S., Erdmann E., Lohse M. J. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation. 1993 Feb;87(2):454–463. doi: 10.1161/01.cir.87.2.454. [DOI] [PubMed] [Google Scholar]
  24. Wang A. M., Doyle M. V., Mark D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. doi: 10.1073/pnas.86.24.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES