Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Dec;92(6):2872–2876. doi: 10.1172/JCI116908

Vasodilation of rat retinal microvessels induced by monobutyrin. Dysregulation in diabetes.

Y D Halvorsen 1, S E Bursell 1, W O Wilkison 1, A C Clermont 1, M Brittis 1, T J McGovern 1, B M Spiegelman 1
PMCID: PMC288489  PMID: 8254042

Abstract

1-Butyryl-glycerol (monobutyrin) is a simple lipid product of adipocytes with angiogenic activity. Recent studies have shown that the biosynthesis of this compound is tightly linked to lipolysis, a process associated with changes in blood flow. We now present data indicating that monobutyrin is an effective vasodilator of rodent blood vessels using a fluorescent retinal angiogram assay. The vasodilatory activity of monobutyrin is potent (ED50 = 3.3 x 10(-7) M), dose dependent, and stereospecific. Because diabetes represents a catabolic, lipolytic state with numerous vascular complications, we examined the action and regulation of monobutyrin in insulin-deficient diabetic rats. Serum levels of monobutyrin in streptozotocin-induced diabetic rats were greatly elevated compared to normal animals. At the same time, the retinal vessels of the diabetic animals develop a resistance to the vasodilatory activity of monobutyrin. These results demonstrate a role for monobutyrin in the control of vascular tone and suggest a possible involvement in the pathology of diabetes.

Full text

PDF
2872

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend O., Wolf S., Jung F., Bertram B., Pöstgens H., Toonen H., Reim M. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991 Sep;75(9):514–518. doi: 10.1136/bjo.75.9.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bursell S. E., Clermont A. C., Shiba T., King G. L. Evaluating retinal circulation using video fluorescein angiography in control and diabetic rats. Curr Eye Res. 1992 Apr;11(4):287–295. doi: 10.3109/02713689209001782. [DOI] [PubMed] [Google Scholar]
  3. Castellot J. J., Jr, Kambe A. M., Dobson D. E., Spiegelman B. M. Heparin potentiation of 3T3-adipocyte stimulated angiogenesis: mechanisms of action on endothelial cells. J Cell Physiol. 1986 May;127(2):323–329. doi: 10.1002/jcp.1041270221. [DOI] [PubMed] [Google Scholar]
  4. Castellot J. J., Jr, Karnovsky M. J., Spiegelman B. M. Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5597–5601. doi: 10.1073/pnas.79.18.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castellot J. J., Jr, Karnovsky M. J., Spiegelman B. M. Potent stimulation of vascular endothelial cell growth by differentiated 3T3 adipocytes. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6007–6011. doi: 10.1073/pnas.77.10.6007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christlieb A. R., Kaldany A., D'Elia J. A. Plasma renin activity and hypertension in diabetes mellitus. Diabetes. 1976 Oct;25(10):969–974. doi: 10.2337/diab.25.10.969. [DOI] [PubMed] [Google Scholar]
  7. Dobson D. E., Kambe A., Block E., Dion T., Lu H., Castellot J. J., Jr, Spiegelman B. M. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell. 1990 Apr 20;61(2):223–230. doi: 10.1016/0092-8674(90)90803-m. [DOI] [PubMed] [Google Scholar]
  8. Harden T. K. Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev. 1983 Mar;35(1):5–32. [PubMed] [Google Scholar]
  9. Kodali D. R., Redgrave T. G., Small D. M., Atkinson D. Synthesis and polymorphism of 3-acyl-sn-glycerols. Biochemistry. 1985 Jan 15;24(2):519–525. doi: 10.1021/bi00323a041. [DOI] [PubMed] [Google Scholar]
  10. Rosell S., Belfrage E. Blood circulation in adipose tissue. Physiol Rev. 1979 Oct;59(4):1078–1104. doi: 10.1152/physrev.1979.59.4.1078. [DOI] [PubMed] [Google Scholar]
  11. Schayer R. W. Histamine and microcirculation. Life Sci. 1974 Aug 1;15(3):391–401. doi: 10.1016/0024-3205(74)90338-5. [DOI] [PubMed] [Google Scholar]
  12. Small K. W., Stefánsson E., Hatchell D. L. Retinal blood flow in normal and diabetic dogs. Invest Ophthalmol Vis Sci. 1987 Apr;28(4):672–675. [PubMed] [Google Scholar]
  13. Su Y. F., Harden T. K., Perkins J. P. Isoproterenol-induced desensitization of adenylate cyclase in human astrocytoma cells. Relation of loss of hormonal responsiveness and decrement in beta-adrenergic receptors. J Biol Chem. 1979 Jan 10;254(1):38–41. [PubMed] [Google Scholar]
  14. Taylor E., Dobree J. H. Proliferative diabetic retinopathy. Site and size of initial lesions. Br J Ophthalmol. 1970 Jan;54(1):11–18. doi: 10.1136/bjo.54.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wilkison W. O., Choy L., Spiegelman B. M. Biosynthetic regulation of monobutyrin, an adipocyte-secreted lipid with angiogenic activity. J Biol Chem. 1991 Sep 5;266(25):16886–16891. [PubMed] [Google Scholar]
  16. Wilkison W. O., Spiegelman B. M. Biosynthesis of the vasoactive lipid monobutyrin. Central role of diacylglycerol. J Biol Chem. 1993 Feb 5;268(4):2844–2849. [PubMed] [Google Scholar]
  17. Yoshida A., Feke G. T., Morales-Stoppello J., Collas G. D., Goger D. G., McMeel J. W. Retinal blood flow alterations during progression of diabetic retinopathy. Arch Ophthalmol. 1983 Feb;101(2):225–227. doi: 10.1001/archopht.1983.01040010227008. [DOI] [PubMed] [Google Scholar]
  18. Zatz R., Brenner B. M. Pathogenesis of diabetic microangiopathy. The hemodynamic view. Am J Med. 1986 Mar;80(3):443–453. doi: 10.1016/0002-9343(86)90719-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES