Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Dec;92(6):2889–2896. doi: 10.1172/JCI116911

Glucose-induced protein kinase C activity regulates arachidonic acid release and eicosanoid production by cultured glomerular mesangial cells.

B Williams 1, R W Schrier 1
PMCID: PMC288492  PMID: 8254044

Abstract

Changes in glomerular eicosanoid production have been implicated in the development of diabetes-induced glomerular hyperfiltration and glomerular mesangial cells (GMC) are major eicosanoid-producing cells within the glomerulus. However, the mechanism for the effect of diabetes mellitus on glomerular mesangial eicosanoid production is unknown. The present study therefore examined whether elevated glucose concentrations activate protein kinase C (PKC) in GMC and whether this PKC activation mediates an effect of elevated glucose concentrations to increase the release of arachidonic acid and eicosanoid production by GMC. The percentage of [3H]arachidonic acid release per 30 min by preloaded GMC monolayers was significantly increased after 3-h exposure to high glucose (20 mM) medium (177% vs control medium) and this increase was sustained after 24-h exposure to high glucose concentrations. 3-h and 24-h exposure to high glucose medium also increased PGE2, 6-keto-PGF1 alpha, and thromboxane (TXB2) production by GMC. High glucose medium (20 mM) increased PKC activity in GMC at 3 and 24 h (168% vs control). In contrast, osmotic control media containing either L-glucose or mannitol did not increase arachidonic acid release, eicosanoid production, or PKC activity in GMC. Inhibiting glucose-induced PKC activation with either H-7 (50 microM) or staurosporine (1 microM) prevented glucose-induced increases in arachidonic acid release and eicosanoid production by GMC. These data demonstrate that elevated extracellular glucose concentrations directly increase the release of endogenous arachidonic acid and eicosanoids by GMC via mechanisms dependent on glucose-induced PKC activation.

Full text

PDF
2889

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod L., Levine L. Plasma prostaglandin levels in rats with diabetes mellitus and diabetic ketoacidosis. Diabetes. 1982 Nov;31(11):994–1001. doi: 10.2337/diacare.31.11.994. [DOI] [PubMed] [Google Scholar]
  2. Ayo S. H., Radnik R., Garoni J. A., Troyer D. A., Kreisberg J. I. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Physiol. 1991 Oct;261(4 Pt 2):F571–F577. doi: 10.1152/ajprenal.1991.261.4.F571. [DOI] [PubMed] [Google Scholar]
  3. Beaudry G. A., Daniel L. W., King L., Waite M. Stimulation of deacylation in Madin-Darby canine kidney cells. 12-O-tetradecanoyl-phorbol-13-acetate stimulates rapid phospholipid deacylation. Biochim Biophys Acta. 1983 Feb 7;750(2):274–281. doi: 10.1016/0005-2760(83)90029-2. [DOI] [PubMed] [Google Scholar]
  4. Bonventre J. V., Swidler M. Calcium dependency of prostaglandin E2 production in rat glomerular mesangial cells. Evidence that protein kinase C modulates the Ca2+-dependent activation of phospholipase A2. J Clin Invest. 1988 Jul;82(1):168–176. doi: 10.1172/JCI113566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craven P. A., Caines M. A., DeRubertis F. R. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism. 1987 Jan;36(1):95–103. doi: 10.1016/0026-0495(87)90070-9. [DOI] [PubMed] [Google Scholar]
  6. Craven P. A., Davidson C. M., DeRubertis F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes. 1990 Jun;39(6):667–674. doi: 10.2337/diab.39.6.667. [DOI] [PubMed] [Google Scholar]
  7. Craven P. A., DeRubertis F. R. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest. 1989 May;83(5):1667–1675. doi: 10.1172/JCI114066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craven P. A., Patterson M. C., DeRubertis F. R. Role for protein kinase C in the modulation of glomerular PGE2 production by angiotensin II. Biochem Biophys Res Commun. 1988 May 16;152(3):1481–1489. doi: 10.1016/s0006-291x(88)80453-4. [DOI] [PubMed] [Google Scholar]
  9. Craven P. A., Patterson M. C., DeRubertis F. R. Role of enhanced arachidonate availability through phospholipase A2 pathway in mediation of increased prostaglandin synthesis by glomeruli from diabetic rats. Diabetes. 1988 Apr;37(4):429–435. doi: 10.2337/diab.37.4.429. [DOI] [PubMed] [Google Scholar]
  10. Davis R. J., Czech M. P. Tumor-promoting phorbol diesters cause the phosphorylation of epidermal growth factor receptors in normal human fibroblasts at threonine-654. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1974–1978. doi: 10.1073/pnas.82.7.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Esmatjes E., Fernandez M. R., Halperin I., Camps J., Gaya J., Arroyo V., Rivera F., Figuerola D. Renal hemodynamic abnormalities in patients with short term insulin-dependent diabetes mellitus: role of renal prostaglandins. J Clin Endocrinol Metab. 1985 Jun;60(6):1231–1236. doi: 10.1210/jcem-60-6-1231. [DOI] [PubMed] [Google Scholar]
  12. Flower R. J., Blackwell G. J. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol. 1976 Feb 1;25(3):285–291. doi: 10.1016/0006-2952(76)90216-1. [DOI] [PubMed] [Google Scholar]
  13. Gerrard J. M., Stuart M. J., Rao G. H., Steffes M. W., Mauer S. M., Brown D. M., White J. G. Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. J Lab Clin Med. 1980 Jun;95(6):950–958. [PubMed] [Google Scholar]
  14. Godson C., Weiss B. A., Insel P. A. Differential activation of protein kinase C alpha is associated with arachidonate release in Madin-Darby canine kidney cells. J Biol Chem. 1990 May 25;265(15):8369–8372. [PubMed] [Google Scholar]
  15. Gronich J. H., Bonventre J. V., Nemenoff R. A. Identification and characterization of a hormonally regulated form of phospholipase A2 in rat renal mesangial cells. J Biol Chem. 1988 Nov 15;263(32):16645–16651. [PubMed] [Google Scholar]
  16. Halenda S. P., Zavoico G. B., Feinstein M. B. Phorbol esters and oleoyl acetoyl glycerol enhance release of arachidonic acid in platelets stimulated by Ca2+ ionophore A23187. J Biol Chem. 1985 Oct 15;260(23):12484–12491. [PubMed] [Google Scholar]
  17. Halushka P. V., Lurie D., Colwell J. A. Increased synthesis of prostaglandin-E-like material by platelets from patients with diabetes mellitus. N Engl J Med. 1977 Dec 15;297(24):1306–1310. doi: 10.1056/NEJM197712152972402. [DOI] [PubMed] [Google Scholar]
  18. Heasley L. E., Johnson G. L. Detection of nerve growth factor and epidermal growth factor-regulated protein kinases in PC12 cells with synthetic peptide substrates. Mol Pharmacol. 1989 Mar;35(3):331–338. [PubMed] [Google Scholar]
  19. Heasley L. E., Johnson G. L. Regulation of protein kinase C by nerve growth factor, epidermal growth factor, and phorbol esters in PC12 pheochromocytoma cells. J Biol Chem. 1989 May 25;264(15):8646–8652. [PubMed] [Google Scholar]
  20. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  21. Hise M. K., Mehta P. S. Characterization and localization of calcium/phospholipid-dependent protein kinase-C during diabetic renal growth. Endocrinology. 1988 Sep;123(3):1553–1558. doi: 10.1210/endo-123-3-1553. [DOI] [PubMed] [Google Scholar]
  22. Ho A. K., Klein D. C. Activation of alpha 1-adrenoceptors, protein kinase C, or treatment with intracellular free Ca2+ elevating agents increases pineal phospholipase A2 activity. Evidence that protein kinase C may participate in Ca2+-dependent alpha 1-adrenergic stimulation of pineal phospholipase A2 activity. J Biol Chem. 1987 Aug 25;262(24):11764–11770. [PubMed] [Google Scholar]
  23. Hostetter T. H., Troy J. L., Brenner B. M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981 Mar;19(3):410–415. doi: 10.1038/ki.1981.33. [DOI] [PubMed] [Google Scholar]
  24. Jeremy J. Y., Dandona P. The role of the diacylglycerol-protein kinase C system in mediating adrenoceptor-prostacyclin synthesis coupling in the rat aorta. Eur J Pharmacol. 1987 Apr 29;136(3):311–316. doi: 10.1016/0014-2999(87)90303-7. [DOI] [PubMed] [Google Scholar]
  25. Johnson M., Harrison H. E., Raftery A. T., Elder J. B. Vascular prostacyclin may be reduced in diabetes in man. Lancet. 1979 Feb 10;1(8111):325–326. doi: 10.1016/s0140-6736(79)90737-2. [DOI] [PubMed] [Google Scholar]
  26. Kasiske B. L., O'Donnell M. P., Keane W. F. Glucose-induced increases in renal hemodynamic function. Possible modulation by renal prostaglandins. Diabetes. 1985 Apr;34(4):360–364. doi: 10.2337/diab.34.4.360. [DOI] [PubMed] [Google Scholar]
  27. Kreisberg J. I., Patel P. Y. The effects of insulin, glucose and diabetes on prostaglandin production by rat kidney glomeruli and cultured glomerular mesangial cells. Prostaglandins Leukot Med. 1983 Aug;11(4):431–442. doi: 10.1016/0262-1746(83)90097-5. [DOI] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Lee T. S., MacGregor L. C., Fluharty S. J., King G. L. Differential regulation of protein kinase C and (Na,K)-adenosine triphosphatase activities by elevated glucose levels in retinal capillary endothelial cells. J Clin Invest. 1989 Jan;83(1):90–94. doi: 10.1172/JCI113889. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  30. Lubawy W. C., Valentovic M. Streptozocin-induced diabetes decreases formation of prostacyclin from arachidonic acid in intact rat lungs. Biochem Med. 1982 Dec;28(3):290–297. doi: 10.1016/0006-2944(82)90082-5. [DOI] [PubMed] [Google Scholar]
  31. Matsumoto H., Sasaki Y. Staurosporine, a protein kinase C inhibitor interferes with proliferation of arterial smooth muscle cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):105–109. doi: 10.1016/s0006-291x(89)80183-4. [DOI] [PubMed] [Google Scholar]
  32. Mauer S. M., Steffes M. W., Ellis E. N., Sutherland D. E., Brown D. M., Goetz F. C. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984 Oct;74(4):1143–1155. doi: 10.1172/JCI111523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McIntyre T. M., Reinhold S. L., Prescott S. M., Zimmerman G. A. Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B4 by human neutrophils. J Biol Chem. 1987 Nov 15;262(32):15370–15376. [PubMed] [Google Scholar]
  34. Menè P., Abboud H. E., Dunn M. J. Regulation of human mesangial cell growth in culture by thromboxane A2 and prostacyclin. Kidney Int. 1990 Aug;38(2):232–239. doi: 10.1038/ki.1990.191. [DOI] [PubMed] [Google Scholar]
  35. Menè P., Dunn M. J. Prostaglandins and rat glomerular mesangial cell proliferation. Kidney Int. 1990 May;37(5):1256–1262. doi: 10.1038/ki.1990.109. [DOI] [PubMed] [Google Scholar]
  36. Meyer-Lehnert H., Schrier R. W. Cyclosporine A enhances vasopressin-induced Ca2+ mobilization and contraction in mesangial cells. Kidney Int. 1988 Jul;34(1):89–97. doi: 10.1038/ki.1988.149. [DOI] [PubMed] [Google Scholar]
  37. Nemenoff R. A., Winitz S., Qian N. X., Van Putten V., Johnson G. L., Heasley L. E. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem. 1993 Jan 25;268(3):1960–1964. [PubMed] [Google Scholar]
  38. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  39. Parker J., Daniel L. W., Waite M. Evidence of protein kinase C involvement in phorbol diester-stimulated arachidonic acid release and prostaglandin synthesis. J Biol Chem. 1987 Apr 15;262(11):5385–5393. [PubMed] [Google Scholar]
  40. Pfeilschifter J., Kurtz A., Bauer C. Role of phospholipase C and protein kinase C in vasoconstrictor-induced prostaglandin synthesis in cultured rat renal mesangial cells. Biochem J. 1986 Feb 15;234(1):125–130. doi: 10.1042/bj2340125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pradelles P., Grassi J., Maclouf J. Enzyme immunoassays of eicosanoids using acetylcholine esterase as label: an alternative to radioimmunoassay. Anal Chem. 1985 Jun;57(7):1170–1173. doi: 10.1021/ac00284a003. [DOI] [PubMed] [Google Scholar]
  42. Rasch R., Nörgaard J. O. Renal enlargement: comparative autoradiographic studies of 3H-thymidine uptake in diabetic and uninephrectomized rats. Diabetologia. 1983 Sep;25(3):280–287. doi: 10.1007/BF00279944. [DOI] [PubMed] [Google Scholar]
  43. Rodbard D., Bridson W., Rayford P. L. Rapid calculation of radioimmunoassay results. J Lab Clin Med. 1969 Nov;74(5):770–781. [PubMed] [Google Scholar]
  44. Rogers S. P., Larkins R. G. Production of 6-oxo-prostaglandin F1 alpha and prostaglandin E2 by isolated glomeruli from normal and diabetic rats. Br Med J (Clin Res Ed) 1982 Apr 24;284(6324):1215–1217. doi: 10.1136/bmj.284.6324.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rogers S. P., Larkins R. G. Production of 6-oxo-prostaglandin F1alpha by rat aorta: influence of diabetes, insulin treatment, and caloric deprivation. Diabetes. 1981 Nov;30(11):935–939. doi: 10.2337/diab.30.11.935. [DOI] [PubMed] [Google Scholar]
  46. Rösen P., Schrör K. Increased prostacyclin release from perfused hearts of acutely diabetic rats. Diabetologia. 1980 May;18(5):391–394. doi: 10.1007/BF00276820. [DOI] [PubMed] [Google Scholar]
  47. Schambelan M., Blake S., Sraer J., Bens M., Nivez M. P., Wahbe F. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus. J Clin Invest. 1985 Feb;75(2):404–412. doi: 10.1172/JCI111714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Scharschmidt L. A., Dunn M. J. Prostaglandin synthesis by rat glomerular mesangial cells in culture. Effects of angiotensin II and arginine vasopressin. J Clin Invest. 1983 Jun;71(6):1756–1764. doi: 10.1172/JCI110931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schrier R. W., Holzgreve H. Hemodynamic factors in the pathogenesis of diabetic nephropathy. Klin Wochenschr. 1988 Apr 15;66(8):325–331. doi: 10.1007/BF01735788. [DOI] [PubMed] [Google Scholar]
  50. Stahl R. A., Thaiss F. Eicosanoids: biosynthesis and function in the glomerulus. Ren Physiol. 1987;10(1):1–13. doi: 10.1159/000173108. [DOI] [PubMed] [Google Scholar]
  51. Steffes M. W., Bilous R. W., Sutherland D. E., Mauer S. M. Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes. 1992 Jun;41(6):679–684. doi: 10.2337/diab.41.6.679. [DOI] [PubMed] [Google Scholar]
  52. Takeda K., Meyer-Lehnert H., Kim J. K., Schrier R. W. Effect of angiotensin II on Ca2+ kinetics and contraction in cultured rat glomerular mesangial cells. Am J Physiol. 1988 Feb;254(2 Pt 2):F254–F266. doi: 10.1152/ajprenal.1988.254.2.F254. [DOI] [PubMed] [Google Scholar]
  53. Touqui L., Rothhut B., Shaw A. M., Fradin A., Vargaftig B. B., Russo-Marie F. Platelet activation--a role for a 40K anti-phospholipase A2 protein indistinguishable from lipocortin. Nature. 1986 May 8;321(6066):177–180. doi: 10.1038/321177a0. [DOI] [PubMed] [Google Scholar]
  54. Weiss B. A., Insel P. A. Intracellular Ca2+ and protein kinase C interact to regulate alpha 1-adrenergic- and bradykinin receptor-stimulated phospholipase A2 activation in Madin-Darby canine kidney cells. J Biol Chem. 1991 Feb 5;266(4):2126–2133. [PubMed] [Google Scholar]
  55. Williams B., Schrier R. W. Characterization of glucose-induced in situ protein kinase C activity in cultured vascular smooth muscle cells. Diabetes. 1992 Nov;41(11):1464–1472. doi: 10.2337/diab.41.11.1464. [DOI] [PubMed] [Google Scholar]
  56. Zatz R., Brenner B. M. Pathogenesis of diabetic microangiopathy. The hemodynamic view. Am J Med. 1986 Mar;80(3):443–453. doi: 10.1016/0002-9343(86)90719-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES