Abstract
Cardiac function and energetics in experimental renal failure in the rat (5/6 nephrectomy) have been investigated by means of an isolated perfused working heart preparation and an isometric Langendorff preparation using 31P nuclear magnetic resonance (31P NMR). 4 wk after nephrectomy cardiac output of isolated hearts perfused with Krebs-Henseleit buffer was significantly lower (P < 0.0001) at all levels of preload and afterload in the renal failure groups than in the pair-fed sham operated control group. In control hearts, cardiac output increased with increases in perfusate calcium from 0.73 to 5.61 mmol/liter whereas uremic hearts failed in high calcium perfusate. Collection of 31P NMR spectra from hearts of renal failure and control animals during 30 min normoxic Langendorff perfusion showed that basal phosphocreatine was reduced by 32% to 4.7 mumol/g wet wt (P < 0.01) and the phosphocreatine to ATP ratio was reduced by 32% (P < 0.01) in uremic hearts. During low flow ischemia, there was a substantial decrease in phosphocreatine in the uremic hearts and an accompanying marked increase in release of inosine into the coronary effluent (14.9 vs 6.1 microM, P < 0.01). We conclude that cardiac function is impaired in experimental renal failure, in association with abnormal cardiac energetics and increased susceptibility to ischemic damage. Disordered myocardial calcium utilization may contribute to these derangements.
Full text
PDF![2934](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/288497/94aad9e7f206/jcinvest00044-0382.png)
![2935](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/288497/4bf8a23ccbb8/jcinvest00044-0383.png)
![2936](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/288497/861478d0d1d4/jcinvest00044-0384.png)
![2937](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/288497/c57fb6c2dbb0/jcinvest00044-0385.png)
![2938](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/288497/19e50502c20f/jcinvest00044-0386.png)
![2939](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/288497/11330bc884cc/jcinvest00044-0387.png)
![2940](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/288497/71f580cfe40c/jcinvest00044-0388.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Capelli J. P., Kasparian H. Cardiac work demands and left ventricular function in end-stage renal disease. Ann Intern Med. 1977 Mar;86(3):261–267. doi: 10.7326/0003-4819-86-3-261. [DOI] [PubMed] [Google Scholar]
- Conway M. A., Allis J., Ouwerkerk R., Niioka T., Rajagopalan B., Radda G. K. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991 Oct 19;338(8773):973–976. doi: 10.1016/0140-6736(91)91838-l. [DOI] [PubMed] [Google Scholar]
- Field M. L., Thompson C., Henderson C., Seymour A. M., Radda G. K. Changes in the myocardial creatine kinase isozyme profile with progression and regression of volume overload eccentric hypertrophy. Biochem Soc Trans. 1992 May;20(2):172S–172S. doi: 10.1042/bst020172s. [DOI] [PubMed] [Google Scholar]
- Harmsen E., de Jong J. W., Serruys P. W. Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta. 1981;115(1):73–84. doi: 10.1016/0009-8981(81)90108-x. [DOI] [PubMed] [Google Scholar]
- Harmsen E., de Tombe P. P., de Jong J. W. Simultaneous determination of myocardial adenine nucleotides and creatine phosphate by high-performance liquid chromatography. J Chromatogr. 1982 Jun 11;230(1):131–136. doi: 10.1016/s0378-4347(00)81439-5. [DOI] [PubMed] [Google Scholar]
- Henrich W. L., Hunt J. M., Nixon J. V. Increased ionized calcium and left ventricular contractility during hemodialysis. N Engl J Med. 1984 Jan 5;310(1):19–23. doi: 10.1056/NEJM198401053100105. [DOI] [PubMed] [Google Scholar]
- Hung J., Harris P. J., Uren R. F., Tiller D. J., Kelly D. T. Uremic cardiomyopathy--effect of hemodialysis on left ventricular function in end-stage renal failure. N Engl J Med. 1980 Mar 6;302(10):547–551. doi: 10.1056/NEJM198003063021003. [DOI] [PubMed] [Google Scholar]
- Ingwall J. S., Atkinson D. E., Clarke K., Fetters J. K. Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J. 1990 Apr;11 (Suppl B):108–115. doi: 10.1093/eurheartj/11.suppl_b.108. [DOI] [PubMed] [Google Scholar]
- Ingwall J. S., Kramer M. F., Fifer M. A., Lorell B. H., Shemin R., Grossman W., Allen P. D. The creatine kinase system in normal and diseased human myocardium. N Engl J Med. 1985 Oct 24;313(17):1050–1054. doi: 10.1056/NEJM198510243131704. [DOI] [PubMed] [Google Scholar]
- Kersting F., Brass H., Heintz R. Uremic cardiomyopathy: studies on cardiac function in the guinea pig. Clin Nephrol. 1978 Sep;10(3):109–113. [PubMed] [Google Scholar]
- Kreusser W., Mann J., Rambausek M., Klooker P., Mehls O., Ritz E. Cardiac function in experimental uremia. Kidney Int Suppl. 1983 Nov;15:S83–S88. [PubMed] [Google Scholar]
- Lundin S., Friberg P., Hallbäck-Nordlander M. Left ventricular hypertrophy improves cardiac performance in spontaneously hypertensive rats. Acta Physiol Scand. 1982 Mar;114(3):321–328. doi: 10.1111/j.1748-1716.1982.tb06991.x. [DOI] [PubMed] [Google Scholar]
- Massry S. G. Parathyroid hormone and uremic myocardiopathy. Contrib Nephrol. 1984;41:231–239. doi: 10.1159/000429287. [DOI] [PubMed] [Google Scholar]
- Matthews P. M., Taylor D. J., Radda G. K. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart. Cardiovasc Res. 1986 Jan;20(1):13–19. doi: 10.1093/cvr/20.1.13. [DOI] [PubMed] [Google Scholar]
- Meyer R. A., Sweeney H. L., Kushmerick M. J. A simple analysis of the "phosphocreatine shuttle". Am J Physiol. 1984 May;246(5 Pt 1):C365–C377. doi: 10.1152/ajpcell.1984.246.5.C365. [DOI] [PubMed] [Google Scholar]
- Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
- Morgan J. P. Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med. 1991 Aug 29;325(9):625–632. doi: 10.1056/NEJM199108293250906. [DOI] [PubMed] [Google Scholar]
- Nivatpumin T., Yipintsoi T., Penpargkul S., Scheuer J. Increased cardiac contractility in acute uremia: interrelationships with hypertension. Am J Physiol. 1975 Aug;229(2):501–505. doi: 10.1152/ajplegacy.1975.229.2.501. [DOI] [PubMed] [Google Scholar]
- Nixon J. V., Mitchell J. H., McPhaul J. J., Jr, Henrich W. L. Effect of hemodialysis on left ventricular function. Dissociation of changes in filling volume and in contractile state. J Clin Invest. 1983 Feb;71(2):377–384. doi: 10.1172/JCI110779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ormrod D., Miller T. Experimental uremia. Description of a model producing varying degrees of stable uremia. Nephron. 1980;26(5):249–254. doi: 10.1159/000181994. [DOI] [PubMed] [Google Scholar]
- Pehrsson S. K., Jonasson R., Lins L. E. Cardiac performance in various stages of renal failure. Br Heart J. 1984 Dec;52(6):667–673. doi: 10.1136/hrt.52.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prosser D., Parsons V. EDITORIAL: The case for a specific uraemic myocardopathy. Nephron. 1975;15(1):4–7. doi: 10.1159/000180487. [DOI] [PubMed] [Google Scholar]
- Raine A. E., Roberts A. F., Manley B. S., Jones J. V., Ledingham J. G. Calcium sensitivity and cardiac performance in genetic and renal models of hypertension. J Hypertens Suppl. 1983 Dec;1(2):85–87. [PubMed] [Google Scholar]
- Rambausek M., Ritz E., Mall G., Mehls O., Katus H. Myocardial hypertrophy in rats with renal insufficiency. Kidney Int. 1985 Nov;28(5):775–782. doi: 10.1038/ki.1985.197. [DOI] [PubMed] [Google Scholar]
- Rostand S. G., Kirk K. A., Rutsky E. A. Dialysis-associated ischemic heart disease: insights from coronary angiography. Kidney Int. 1984 Apr;25(4):653–659. doi: 10.1038/ki.1984.70. [DOI] [PubMed] [Google Scholar]
- Scheuer J., Nivatpumin T., Yipintsoi T. Effects of moderate uremia on cardiac contractile responses. Proc Soc Exp Biol Med. 1975 Nov;150(2):471–474. doi: 10.3181/00379727-150-39058. [DOI] [PubMed] [Google Scholar]
- Scheuer J., Stezoski W. The effects of uremic compounds on cardiac function and metabolism. J Mol Cell Cardiol. 1973 Jun;5(3):287–300. doi: 10.1016/0022-2828(73)90068-0. [DOI] [PubMed] [Google Scholar]
- Seymour A. M., Eldar H., Radda G. K. Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study. Biochim Biophys Acta. 1990 Nov 12;1055(2):107–116. doi: 10.1016/0167-4889(90)90110-y. [DOI] [PubMed] [Google Scholar]
- Taegtmeyer H., Roberts A. F., Raine A. E. Energy metabolism in reperfused heart muscle: metabolic correlates to return of function. J Am Coll Cardiol. 1985 Oct;6(4):864–870. doi: 10.1016/s0735-1097(85)80496-4. [DOI] [PubMed] [Google Scholar]
- Trentham D. R., Eccleston J. F., Bagshaw C. R. Kinetic analysis of ATPase mechanisms. Q Rev Biophys. 1976 May;9(2):217–281. doi: 10.1017/s0033583500002419. [DOI] [PubMed] [Google Scholar]
- Van Belle H., Goossens F., Wynants J. Formation and release of purine catabolites during hypoperfusion, anoxia, and ischemia. Am J Physiol. 1987 May;252(5 Pt 2):H886–H893. doi: 10.1152/ajpheart.1987.252.5.H886. [DOI] [PubMed] [Google Scholar]
- Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]
- Warrier E. R., Balakrishnan K. G., Sankaran K., Gupta G. D. Systolic time intervals in chronic severe anaemia and effect of diuretic and digitalis. Br Heart J. 1981 Jul;46(1):80–83. doi: 10.1136/hrt.46.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss R. G., Bottomley P. A., Hardy C. J., Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med. 1990 Dec 6;323(23):1593–1600. doi: 10.1056/NEJM199012063232304. [DOI] [PubMed] [Google Scholar]