Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1980 Jan;33(1):115–122. doi: 10.1128/jvi.33.1.115-122.1980

Herpesvirus-Lymphoid Cell Interactions: Comparative Studies on the Biology of Herpes Simplex Virus-Induced Fc Receptors in B, T, and “Null” Lymphoid Cell Lines

José Menezes 1, Angelo E Bourkas 1
PMCID: PMC288529  PMID: 6245224

Abstract

We have investigated the induction of Fc receptor (FcR) in different types of lymphoid cell lines (LCL) infected with herpes simplex virus (HSV). Subpopulations of certain of these LCL normally express FcR unrelated to herpetic infection. Differentiation of virus-induced FcR from that related to normal cell function was therefore possible. FcR detection was carried out by means of a rosette assay using ox erythrocytes coated with 7S immunoglobulin G (EA rosettes). Both HSV types 1 and 2 were found to induce FcR in B, T, and “null” (i.e., non-B, non-T) type LCL; however, in all the LCL tested, this HSV-induced FcR expression appeared to be more restricted in the responding T LCL than in responding B and null type LCL. In addition, kinetic experiments revealed that the time course of HSV-induced FcR expression differed among these LCL types tested. Interestingly, a number of LCL were resistant to HSV infection or restricted HSV gene expression, including expression of the viral products responsible for FcR induction. In all the responding HSV-infected LCL, induction of FcR always paralleled the expression of HSV antigens. Synthesis of HSV-induced FcR was shown to be inhibited by phosphonoacetic acid, an inhibitor of herpesvirus DNA polymerase activity, whereas FcR of non-HSV origin was found to be resistant to inhibitor. This would infer that HSV codes for an FcR which can be differentiated from that of cellular origin by using phosphonoacetic acid. Therefore, two different mechanisms of FcR synthesis may be suggested, one virus mediated and the second probably under cellular control. In addition, the data obtained using Epstein-Barr virus producer as well as isogeneic monoclonal cell lines, with and without the Epstein-Barr virus genome, indicated that the resident Epstein-Barr virus genome in the target cell did not have a detectable effect in the induction of FcR by HSV.

Full text

PDF
115

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourkas A. E., Menezes J. Studies on the induction of IgG-Fc receptors and synthesis of IgM in primary and chronically-infected lymphoid (Raji) cells by herpes simplex virus. J Gen Virol. 1979 Aug;44(2):361–371. doi: 10.1099/0022-1317-44-2-361. [DOI] [PubMed] [Google Scholar]
  2. Costa J., Yee C., Nakamura Y., Rabson A. Characteristics of the Fc receptor induced by herpes simplex virus. Intervirology. 1978;10(1):32–39. doi: 10.1159/000148965. [DOI] [PubMed] [Google Scholar]
  3. FOLEY G. E., LAZARUS H., FARBER S., UZMAN B. G., BOONE B. A., MCCARTHY R. E. CONTINUOUS CULTURE OF HUMAN LYMPHOBLASTS FROM PERIPHERAL BLOOD OF A CHILD WITH ACUTE LEUKEMIA. Cancer. 1965 Apr;18:522–529. doi: 10.1002/1097-0142(196504)18:4<522::aid-cncr2820180418>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  4. Flanagan J. F. Virus-specific ribonucleic acid synthesis in KB cells infected with herpes simplex virus. J Virol. 1967 Jun;1(3):583–590. doi: 10.1128/jvi.1.3.583-590.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fresen K. O., Hausen H. Establishment of EBNA-expressing cell lines by infection of Epstein-Barr virus (EBV)-genome-negative human lymphoma cells with different EBV strains. Int J Cancer. 1976 Feb 15;17(2):161–166. doi: 10.1002/ijc.2910170203. [DOI] [PubMed] [Google Scholar]
  6. Furukawa T., Hornberger E., Sakuma S., Plotkin S. A. Demonstration of immunoglobulin G receptors induced by human cytomegalovirus. J Clin Microbiol. 1975 Oct;2(4):332–336. doi: 10.1128/jcm.2.4.332-336.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hinuma Y., Grace J. T., Jr Cloning of immunoglobulin-producing human leukemic and lymphoma cells in long-term cultures. Proc Soc Exp Biol Med. 1967 Jan;124(1):107–111. doi: 10.3181/00379727-124-31677. [DOI] [PubMed] [Google Scholar]
  8. Honess R. W., Watson D. H. Herpes simplex virus resistance and sensitivity to phosphonoacetic acid. J Virol. 1977 Feb;21(2):584–600. doi: 10.1128/jvi.21.2.584-600.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang C. C., Hou Y., Woods L. K., Moore G. E., Minowada J. Cytogenetic study of human lymphoid T-cell lines derived from lymphocytic leukemia. J Natl Cancer Inst. 1974 Sep;53(3):655–660. doi: 10.1093/jnci/53.3.655. [DOI] [PubMed] [Google Scholar]
  10. Jondal M., Klein G. Surface markers on human B and T lymphocytes. II. Presence of Epstein-Barr virus receptors on B lymphocytes. J Exp Med. 1973 Dec 1;138(6):1365–1378. doi: 10.1084/jem.138.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaplan J., Mastrangelo R., Peterson W. D., Jr Childhood lymphoblastic lymphoma, a cancer of thymus-derived lymphocytes. Cancer Res. 1974 Mar;34(3):521–525. [PubMed] [Google Scholar]
  12. Keller R., Peitchel R., Goldman J. N., Goldman M. An IgG-Fc receptor induced in cytomegalovirus-infected human fibroblasts. J Immunol. 1976 Mar;116(3):772–777. [PubMed] [Google Scholar]
  13. Kerbel R. S., Davies A. J. The possible biological significance of Fc receptors on mammalian lymphocytes and tumor cells. Cell. 1974 Oct;3(2):105–112. doi: 10.1016/0092-8674(74)90113-5. [DOI] [PubMed] [Google Scholar]
  14. Leinbach S. S., Summers W. C. Herpes simplex virus type 1 infection of isogenic Epstein-Barr virus genome-negative and -positive Burkitt's lymphoma-derived cell lines. J Virol. 1979 Apr;30(1):248–254. doi: 10.1128/jvi.30.1.248-254.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mao J. C., Robishaw E. E., Overby L. R. Inhibition of DNA polymerase from herpes simplex virus-infected wi-38 cells by phosphonoacetic Acid. J Virol. 1975 May;15(5):1281–1283. doi: 10.1128/jvi.15.5.1281-1283.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Menezes J., Jondal M., Leibold W., Dorval G. Epstein-Barr virus interactions with human lymphocyte subpopulations: virus adsorption, kinetics of expression of Epstein-Barr virus-associated nuclear antigen, and lymphocyte transformation. Infect Immun. 1976 Feb;13(2):303–310. doi: 10.1128/iai.13.2.303-310.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Menezes J., Leibold W., Klein G. Biological differences between Epstein-Barr virus (EBV) strains with regard to lymphocyte transforming ability, superinfection and antigen induction. Exp Cell Res. 1975 May;92(2):478–484. doi: 10.1016/0014-4827(75)90404-8. [DOI] [PubMed] [Google Scholar]
  18. Menezes J., Leibold W., Klein G., Clements G. Establishment and characterization of an Epstein-Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV-genome-negative African Burkitt's lymphoma. Biomedicine. 1975 Jul;22(4):276–284. [PubMed] [Google Scholar]
  19. Menezes J., Patel P., Dussault H., Bourkas A. E. Comparative studies on the induction of virus-associated nuclear antigen and early antigen by lymphocyte-transforming (B95-8) and nontransforming (P3HR-1) strains of Epstein-Barr virus. Intervirology. 1978;9(2):86–94. doi: 10.1159/000148926. [DOI] [PubMed] [Google Scholar]
  20. Miller G., Shope T., Lisco H., Stitt D., Lipman M. Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci U S A. 1972 Feb;69(2):383–387. doi: 10.1073/pnas.69.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Minowada J., Onuma T., Moore G. E. Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst. 1972 Sep;49(3):891–895. [PubMed] [Google Scholar]
  22. Minowada J., Tsubota T., Greaves M. F., Walters T. R. A non-T, non-B human leukemia cell line (NALM-1): establishment of the cell line and presence of leukemia-associated antigens. J Natl Cancer Inst. 1977 Jul;59(1):83–87. doi: 10.1093/jnci/59.1.83. [DOI] [PubMed] [Google Scholar]
  23. Nilsson K., Sundström C. Establishment and characteristics of two unique cell lines from patients with lymphosarcoma. Int J Cancer. 1974 Jun 15;13(6):808–823. doi: 10.1002/ijc.2910130609. [DOI] [PubMed] [Google Scholar]
  24. PULVERTAFT J. V. A STUDY OF MALIGNANT TUMOURS IN NIGERIA BY SHORT-TERM TISSUE CULTURE. J Clin Pathol. 1965 May;18:261–273. doi: 10.1136/jcp.18.3.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rahman A. A., Teschner M., Sethi K. K., Brandis H. Appearance of IgG (Fc) receptor(s) on cultured human fibroblasts infected with human cytomegalovirus. J Immunol. 1976 Jul;117(1):253–258. [PubMed] [Google Scholar]
  26. Rosenfeld C., Goutner A., Choquet C., Venuat A. M., Kayibanda B., Pico J. L., Greaves M. F. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature. 1977 Jun 30;267(5614):841–843. doi: 10.1038/267841a0. [DOI] [PubMed] [Google Scholar]
  27. WATKINS J. F. ADSORPTION OF SENSITIZED SHEEP ERYTHROCYTES TO HELA CELLS INFECTED WITH HERPES SIMPLEX VIRUS. Nature. 1964 Jun 27;202:1364–1365. doi: 10.1038/2021364a0. [DOI] [PubMed] [Google Scholar]
  28. Westmoreland D., St Jeor S., Rapp F. The development by cytomegalovirus-infected cells of binding affinity for normal human immunoglobulin. J Immunol. 1976 Jun;116(6):1566–1570. [PubMed] [Google Scholar]
  29. Westmoreland D., Watkins J. F., Rapp F. Demonstration of a receptor for IgG in Syrian hamster cells transformed with herpes simplex virus. J Gen Virol. 1974 Oct;25(1):167–170. doi: 10.1099/0022-1317-25-1-167. [DOI] [PubMed] [Google Scholar]
  30. Westmoreland D., Watkins J. F. The IgG receptor induced by herpes simplex virus: studies using radioiodinated IgG. J Gen Virol. 1974 Jul;24(1):167–178. doi: 10.1099/0022-1317-24-1-167. [DOI] [PubMed] [Google Scholar]
  31. Yasuda J., Milgrom F. Hemadsorption by herpes simplex-infected cell cultures. Int Arch Allergy Appl Immunol. 1968;33(2):151–170. doi: 10.1159/000229985. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES