Abstract
Replication of milker's node virus (MNV) DNA begins 4 to 8 h postinfection, continues to 30 to 36 h postinfection in the cytoplasm of infected, primary bovine embryonic kidney cells, and is accompanied by an inhibition of host nuclear DNA synthesis. Between 20 and 24 h postinfection, newly replicated genomes are incorporated into particles which cosediment with purified MNV. These biochemical measurements could be correlated with the development of MN virions as revealed by electron microscopic analysis of thin sections prepared from infected cells. Analysis of the DNA in purified MNV showed that the virions contained a double-stranded DNA molecule with a molecular weight of 85 x 10(6) to 87 x 10(6) and a guanine-plus-cytosine content of about 63%. After denaturation and sedimentation analysis of MNV DNA in alkaline sucrose gradients, three major DNA species were resolved. These species appeared to represent intact, terminally cross-linked genomes (approximately 75 to 80S); genomes bearing one nick (or with one cross-link removed) (60 to 65S); and complementary, denatured DNA strands released from cross-linked genomes bearing two nicks (or with both cross-links removed) (52 to 55S). Forty [35S]methionine-labeled polypeptides, ranging from approximately 200,000 daltons to 10,000 to 15,000 daltons, were detected by radioautography after polyacrylamide gel electrophoresis of the proteins present in detergent-solubilized MNV preparations. Treatment of MN virions with Nonidet P-40, beta-mercaptoethanol, and sonication released 10 polypeptides, which were apparently located on the surface of virions. Further fractionation of these released polypeptides, followed by electron microscopy and polyacrylamide gel electrophoresis, indicated that a 42,000- to 45,000-dalton polypeptide is a major component of the threadlike tubule structure present on the surface of MN virions.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berns K. I., Silverman C. Natural occurrence of cross-linked vaccinia virus deoxyribonucleic acid. J Virol. 1970 Mar;5(3):299–304. doi: 10.1128/jvi.5.3.299-304.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borun T. W., Scharff M. D., Robbins E. Preparation of mammalian polyribosomes with the detergent Nonidet P-40. Biochim Biophys Acta. 1967 Nov 21;149(1):302–304. doi: 10.1016/0005-2787(67)90715-0. [DOI] [PubMed] [Google Scholar]
- COHEN E. P., DELONG S. S., SANDERS J., MOSCOVICI C. ASPECTS OF THE MORPHOLOGIC DEVELOPMENT OF PSEUDOCOWPOX VIRUS. Virology. 1964 May;23:56–64. doi: 10.1016/s0042-6822(64)80007-6. [DOI] [PubMed] [Google Scholar]
- DALES S., KAJIOKA R. THE CYCLE OF MULTIPLICATION OF VACCINIA VIRUS IN EARLE'S STRAIN L CELLS. I. UPTAKE AND PENETRATION. Virology. 1964 Nov;24:278–294. doi: 10.1016/0042-6822(64)90167-9. [DOI] [PubMed] [Google Scholar]
- DALES S., SIMINOVITCH L. The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. J Biophys Biochem Cytol. 1961 Aug;10:475–503. doi: 10.1083/jcb.10.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALES S. The uptake and development of vaccinia virus in strain L cells followed with labeled viral deoxyribonucleic acid. J Cell Biol. 1963 Jul;18:51–72. doi: 10.1083/jcb.18.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dales S., Mosbach E. H. Vaccinia as a model for membrane biogenesis. Virology. 1968 Aug;35(4):564–583. doi: 10.1016/0042-6822(68)90286-9. [DOI] [PubMed] [Google Scholar]
- De Harven E., Yohn D. S. The fine structure of the Yaba monkey tumor poxvirus. Cancer Res. 1966 May;26(5):995–1008. [PubMed] [Google Scholar]
- Easterbrook K. B. Controlled degradation of vaccinia virions in vitro: an electron microscopic study. J Ultrastruct Res. 1966 Mar;14(5):484–496. doi: 10.1016/s0022-5320(66)80077-1. [DOI] [PubMed] [Google Scholar]
- Esteban M., Flores L., Holowczak J. A. Topography of vaccinia virus DNA. Virology. 1977 Oct 1;82(1):163–181. doi: 10.1016/0042-6822(77)90040-x. [DOI] [PubMed] [Google Scholar]
- Esteban M., Holowczak J. A. Replication of vaccinia DNA in mouse L cells. I. In vivo DNA synthesis. Virology. 1977 May 1;78(1):57–75. doi: 10.1016/0042-6822(77)90078-2. [DOI] [PubMed] [Google Scholar]
- Esteban M., Holowczak J. A. Replication of vaccinia DNA in mouse L cells. IV. Protein synthesis and viral DNA replication. Virology. 1978 May 15;86(2):376–390. doi: 10.1016/0042-6822(78)90078-8. [DOI] [PubMed] [Google Scholar]
- Ewton D., Hodes M. E. Nucleic acid synthesis in HeLa cells infected with Shope fibroma virus. Virology. 1967 Sep;33(1):77–83. doi: 10.1016/0042-6822(67)90095-5. [DOI] [PubMed] [Google Scholar]
- FRIEDMAN-KIEN A. E., ROWE W. P., BANFIELD W. G. Milker's nodules: isolation of a poxvirus from a human case. Science. 1963 Jun 21;140(3573):1335–1336. doi: 10.1126/science.140.3573.1335. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Fenner F. Classification and nomenclature of viruses. Second report of the International Committee on Taxonomy of Viruses. Intervirology. 1976;7(1-2):1–115. doi: 10.1159/000149938. [DOI] [PubMed] [Google Scholar]
- Fil W., Holowczak J. A., Flores L., Thomas V. Biochemical and electron microscopic observations of vaccinia virus morphogenesis in HeLa cells after hydroxyurea reversal. Virology. 1974 Oct;61(2):376–396. doi: 10.1016/0042-6822(74)90275-x. [DOI] [PubMed] [Google Scholar]
- Gafford L. G., Sinclair F., Randall C. C. Alteration of DNA metabolism in fowlpox-infected chick embryo monolayers. Virology. 1972 May;48(2):567–573. doi: 10.1016/0042-6822(72)90067-0. [DOI] [PubMed] [Google Scholar]
- Geshelin P., Berns K. I. Characterization and localization of the naturally occurring cross-links in vaccinia virus DNA. J Mol Biol. 1974 Oct 5;88(4):785–796. doi: 10.1016/0022-2836(74)90399-4. [DOI] [PubMed] [Google Scholar]
- Hershey A. D., Burgi E., Ingraham L. COHESION OF DNA MOLECULES ISOLATED FROM PHAGE LAMBDA. Proc Natl Acad Sci U S A. 1963 May;49(5):748–755. doi: 10.1073/pnas.49.5.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holowczak J. A. Poxvirus DNA. I. Studies on the structure of the vaccinia genome. Virology. 1976 Jul 1;72(1):121–133. doi: 10.1016/0042-6822(76)90317-2. [DOI] [PubMed] [Google Scholar]
- Holowczak J. A. Uncoating of poxviruses. I. Detection and characterization of subviral particles in the uncoating process. Virology. 1972 Oct;50(1):216–232. doi: 10.1016/0042-6822(72)90362-5. [DOI] [PubMed] [Google Scholar]
- Ichihashi Y., Matsumoto S., Dales S. Biogenesis of poxviruses: role of A-type inclusions and host cell membranes in virus dissemination. Virology. 1971 Dec;46(3):507–532. doi: 10.1016/0042-6822(71)90056-0. [DOI] [PubMed] [Google Scholar]
- Ikuta K., Miyamoto H., Kato S. Studies on the polypeptides of poxvirus. I. Comparison of structural polypeptides in vaccina, cowpox and Shope fibroma viruses. Biken J. 1978 Jun;21(2):51–61. [PubMed] [Google Scholar]
- JOKLIK W. K. The preparation and characteristics of highly purified radioactively labelled poxvirus. Biochim Biophys Acta. 1962 Aug 20;61:290–301. doi: 10.1016/0926-6550(62)90091-9. [DOI] [PubMed] [Google Scholar]
- Joklik W. K. The poxviruses. Bacteriol Rev. 1966 Mar;30(1):33–66. doi: 10.1128/br.30.1.33-66.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAJIOKA R., SIMINOVITCH L., DALES S. THE CYCLE OF MULTIPLICATION OF VACCINIA VIRUS IN EARLE'S STRAIN L CELLS. II. INITIATION OF DNA SYNTHESIS AND MORPHOGENESIS. Virology. 1964 Nov;24:295–309. doi: 10.1016/0042-6822(64)90168-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MOSCOVICI C., COHEN E. P., SANDERS J., DELONG S. S. ISOLATION OF A VIRAL AGENT FROM PSEUDOCOWPOX DISEASE. Science. 1963 Sep 6;141(3584):915–916. doi: 10.1126/science.141.3584.915. [DOI] [PubMed] [Google Scholar]
- McCarron R. J., Cabrera C. V., Esteban M., McAllister W. T., Holowczak J. A. Structure of vaccinia DNA: analysis of the viral genome by restriction endonucleases. Virology. 1978 May 1;86(1):88–101. doi: 10.1016/0042-6822(78)90010-7. [DOI] [PubMed] [Google Scholar]
- Menna A., Wittek R., Bachmann P. A., Mayr A., Wyler R. Physical characterization of a stomatitis papulosa virus genome: a cleavage map for the restriction endonucleases HindIII and EcoRI. Arch Virol. 1979;59(1-2):145–156. doi: 10.1007/BF01317904. [DOI] [PubMed] [Google Scholar]
- NAGINGTON J., HORNE R. W. Morphological studies of orf and vaccinia viruses. Virology. 1962 Mar;16:248–260. doi: 10.1016/0042-6822(62)90245-3. [DOI] [PubMed] [Google Scholar]
- NAGINGTON J., NEWTON A. A., HORNE R. W. THE STRUCTURE OF ORF VIRUS. Virology. 1964 Aug;23:461–472. doi: 10.1016/0042-6822(64)90230-2. [DOI] [PubMed] [Google Scholar]
- NAGINGTON J., PLOWRIGHT W., HORNE R. W. The morphology of bovine papular stomatitis virus. Virology. 1962 Jun;17:361–364. doi: 10.1016/0042-6822(62)90129-0. [DOI] [PubMed] [Google Scholar]
- PETERS D., MUELLER G., BUETTNER D. THE FINE STRUCTURE OF PARAVACCINIA VIRUSES. Virology. 1964 Aug;23:609–611. doi: 10.1016/0042-6822(64)90246-6. [DOI] [PubMed] [Google Scholar]
- SALZMAN N. P. The rate of formation of vaccinia deoxyribonucleic acid and vaccinia virus. Virology. 1960 Jan;10:150–152. doi: 10.1016/0042-6822(60)90015-5. [DOI] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
- Sheldrick P., Berthelot N. Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 2):667–678. doi: 10.1101/sqb.1974.039.01.080. [DOI] [PubMed] [Google Scholar]
- Soloski M. J., Esteban M., Holowczak J. A. DNA-binding proteins in the cytoplasm of vaccinia virus-infected mouse L-cells. J Virol. 1978 Jan;25(1):263–273. doi: 10.1128/jvi.25.1.263-273.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern W., Dales S. Biogenesis of vaccinia: isolation and characterization of a surface component that elicits antibody suppressing infectivity and cell-cell fusion. Virology. 1976 Nov;75(1):232–241. doi: 10.1016/0042-6822(76)90022-2. [DOI] [PubMed] [Google Scholar]
- Tsuruhara T. Immature particle formation of Yaba poxvirus studied by electron microscopy. J Natl Cancer Inst. 1971 Sep;47(3):549–554. [PubMed] [Google Scholar]
- WESTWOOD J. C., HARRIS W. J., ZWARTOUW H. T., TITMUSS D. H., APPLEYARD G. STUDIES ON THE STRUCTURE OF VACCINIA VIRUS. J Gen Microbiol. 1964 Jan;34:67–78. doi: 10.1099/00221287-34-1-67. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Wittek R., Kuenzle C. C., Wyler R. High C + G content in parapoxvirus DNA. J Gen Virol. 1979 Apr;43(1):231–234. doi: 10.1099/0022-1317-43-1-231. [DOI] [PubMed] [Google Scholar]
- Yohn D. S., Marmol F. R., Olsen R. G. Growth kinetics of Yaba tumor poxvirus after in vitro adaptation to cercopithecus kidney cells. J Virol. 1970 Feb;5(2):205–211. doi: 10.1128/jvi.5.2.205-211.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]




