Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1980 Aug;35(2):371–381. doi: 10.1128/jvi.35.2.371-381.1980

Efficient Transcription of a Compact Nucleoprotein Complex Isolated from Purified Simian Virus 40 Virions

John N Brady 1, Christian Lavialle 1, Norman P Salzman 1
PMCID: PMC288821  PMID: 6255178

Abstract

Simian virus 40 (SV40) virions were dissociated in vitro by treatment with ethylene glycol-bis-N-N′-tetraacetic acid and dithiothreitol. The compact nucleo-protein core released as a result of the dissociation had a sedimentation value of 110 to 115S compared with a value of 240S for intact virions. The viral cores contained a fraction of the viral proteins VP1 and VP2 in addition to the proteins found associated with the viral minichromosome, i.e., VP3 and histones H2A, H2B, H3, and H4. Our results suggest that the association of VP1, VP2, or both with the viral minichromosome, in addition to maintaining a highly compact structure, modifies the transcriptional properties of the nucleoprotein complex. In the presence of saturating amounts of Escherichia coli RNA polymerase, 95 to 100% of the SV40 nucleoprotein cores were able to form transcriptional complexes. Sedimentation analysis of the core transcriptional complex indicated that the initiation and elongation of nascent RNA chains occurred on the compact SV40 core. Cesium chloride density gradient analysis of the SV40 virion core before and after transcription indicated that no substantial loss of protein occurred during the process of transcription. RNA synthesized from SV40 cores was a fairly homogeneous 16 to 18S species with an average chain length of approximately 2,300 nucleotides. Hybridization analysis of this RNA indicated that specific recognition of RNA polymerase promoter sites was preserved, since transcription was asymmetric, occurring preferentially on the “early” SV40 DNA strand. The rate of incorporation of ribonucleoside triphosphates into acid-insoluble RNA with SV40 cores as the template was 70 to 95% of that obtained with supercoiled SV40 form I DNA. SV40 minichromosomes, under identical transcription assay conditions, had an incorporation rate which was 20% of that obtained with SV40 form I DNA. These results show that association of protein VP1 or VP2 or both enhances the transcriptional activity and suggest that these “late” viral proteins may play a role in the regulation of expression of the SV40 genome.

Full text

PDF
371

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady J. N., Winston V. D., Consigli R. A. Characterization of a DNA-protein complex and capsomere subunits derived from polyoma virus by treatment with ethyleneglycol-bis-N,N'-tetraacetic acid and dithiothreitol. J Virol. 1978 Jul;27(1):193–204. doi: 10.1128/jvi.27.1.193-204.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brady J. N., Winston V. D., Consigli R. A. Dissociation of polyoma virus by the chelation of calcium ions found associated with purified virions. J Virol. 1977 Sep;23(3):717–724. doi: 10.1128/jvi.23.3.717-724.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bustin M. Binding of E. coli RNA polymerase to chromatin subunits. Nucleic Acids Res. 1978 Mar;5(3):925–932. doi: 10.1093/nar/5.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiu N., Baserga R., Furth J. J. Composition and template activity of chromatin fractionated by isoelectric focusing. Biochemistry. 1977 Nov 1;16(22):4796–4802. doi: 10.1021/bi00641a006. [DOI] [PubMed] [Google Scholar]
  5. Christiansen G., Landers T., Griffith J., Berg P. Characterization of components released by alkali disruption of simian virus 40. J Virol. 1977 Mar;21(3):1079–1084. doi: 10.1128/jvi.21.3.1079-1084.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Consigli R. A., Center M. S. Recent advances in polyoma virus research. CRC Crit Rev Microbiol. 1978;6(3):263–299. doi: 10.3109/10408417809090624. [DOI] [PubMed] [Google Scholar]
  7. Crémisi C., Chestier A., Dauguet C., Yaniv M. Transcription of SV 40 nucleoprotein complexes in vitro. Biochem Biophys Res Commun. 1977 Sep 9;78(1):74–82. doi: 10.1016/0006-291x(77)91223-2. [DOI] [PubMed] [Google Scholar]
  8. Defer N., Crepin M., Terrioux C., Kruh J., Gros F. Comparison of non histone proteins selectively associated with nucleosomes with proteins released during limited DNase digestions. Nucleic Acids Res. 1979 Mar;6(3):953–966. doi: 10.1093/nar/6.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Djondjurov L., Ivanova E., Tsanev R. Two chromatin fractions with different metabolic properties of non-histone proteins and of newly synthesized RNA. Eur J Biochem. 1979 Jun;97(1):133–139. doi: 10.1111/j.1432-1033.1979.tb13094.x. [DOI] [PubMed] [Google Scholar]
  10. Dooley D. C., Ryzlak M. T., Ozer H. L. Endonucleases and simian virus 40 virions: origin of a virion-associated endonuclease. J Virol. 1976 Feb;17(2):352–362. doi: 10.1128/jvi.17.2.352-362.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felsenfeld G. Chromatin. Nature. 1978 Jan 12;271(5641):115–122. doi: 10.1038/271115a0. [DOI] [PubMed] [Google Scholar]
  12. Fernandez-Munoz R., Coca-Prados M., Hsu M. T. Intracellular forms of simian virus 40 nucleoprotein complexes. I. Methods of isolation and characterization in CV-1 cells. J Virol. 1979 Feb;29(2):612–623. doi: 10.1128/jvi.29.2.612-623.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garber E. A., Seidman M. M., Levine A. J. The detection and characterization of multiple forms of SV40 nucleoprotein complexes. Virology. 1978 Oct 15;90(2):305–316. doi: 10.1016/0042-6822(78)90315-x. [DOI] [PubMed] [Google Scholar]
  14. Garel A., Axel R. Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3966–3970. doi: 10.1073/pnas.73.11.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Germond J. E., Hirt B., Oudet P., Gross-Bellark M., Chambon P. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A. 1975 May;72(5):1843–1847. doi: 10.1073/pnas.72.5.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hale P., Lebowitz J. Binding and transcription of simian virus 40 DNA by DNA-dependent RNA polymerase from Escherichia coli. J Virol. 1978 Jan;25(1):298–304. doi: 10.1128/jvi.25.1.298-304.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hall M. R. Transcription and reisolation of the simian virus 40 nucleoprotein complex. Biochem Biophys Res Commun. 1977 Jun 6;76(3):698–704. doi: 10.1016/0006-291x(77)91556-x. [DOI] [PubMed] [Google Scholar]
  18. Huang E. S., Nonoyama M., Pagano J. S. Structure and function of the polypeptides in simian virus 40. II. Transcription of subviral deoxynucleoprotein complexes in vitro. J Virol. 1972 Jun;9(6):930–937. doi: 10.1128/jvi.9.6.930-937.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jackson J. B., Pollock J. M., Jr, Rill R. L. Chromatin fractionation procedure that yields nucleosomes containing near-stoichiometric amounts of high mobility group nonhistone chromosomal proteins. Biochemistry. 1979 Aug 21;18(17):3739–3748. doi: 10.1021/bi00584a015. [DOI] [PubMed] [Google Scholar]
  20. La Bella F., Vesco C. Late modifications of simian virus 40 chromatin during the lytic cycle occur in an immature form of virion. J Virol. 1980 Mar;33(3):1138–1150. doi: 10.1128/jvi.33.3.1138-1150.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lacy E., Axel R. Analysis of DNA of isolated chromatin subunits. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3978–3982. doi: 10.1073/pnas.72.10.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lebowitz J., Garon C. G., Chen M. C., Salzman N. P. Chemical modification of simian virus 40 DNA by reaction with a water-soluble carbodiimide. J Virol. 1976 Apr;18(1):205–210. doi: 10.1128/jvi.18.1.205-210.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Letnansky K. Nuclear proteins in genetically active and inactive parts of chromatin. FEBS Lett. 1978 May 1;89(1):93–97. doi: 10.1016/0014-5793(78)80530-4. [DOI] [PubMed] [Google Scholar]
  24. Levy B. W., Connor W., Dixon G. H. A subset of trout testis nucleosomes enriched in transcribed DNA sequences contains high mobility group proteins as major structural components. J Biol Chem. 1979 Feb 10;254(3):609–620. [PubMed] [Google Scholar]
  25. MacGregor J. P., Chen Y. H., Goldstein D. A., Hall M. R. Properties of the histones associated with simian virus 40 replicative form nucleoprotein complex. Biochem Biophys Res Commun. 1978 Aug 14;83(3):814–821. doi: 10.1016/0006-291x(78)91467-5. [DOI] [PubMed] [Google Scholar]
  26. Mackay R. L., Consigli R. A. Early events in polyoma virus infection: attachment, penetration, and nuclear entry. J Virol. 1976 Aug;19(2):620–636. doi: 10.1128/jvi.19.2.620-636.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mandel J. L., Chambon P. Animal DNA-dependent RNA polymerases. Studies on the reaction parameters of transcription in vitro of Simian virus 40 DNA by mammalian RNA polymerases AI and B. Eur J Biochem. 1974 Jan 16;41(2):367–378. doi: 10.1111/j.1432-1033.1974.tb03279.x. [DOI] [PubMed] [Google Scholar]
  28. Martin R. G. On the nucleoprotein core of simian virus 40. Virology. 1977 Dec;83(2):433–437. doi: 10.1016/0042-6822(77)90190-8. [DOI] [PubMed] [Google Scholar]
  29. Mathis D. J., Oudet P., Wasylyk B., Chambon P. Effect of histone acetylation on structure and in vitro transcription of chromatin. Nucleic Acids Res. 1978 Oct;5(10):3523–3547. doi: 10.1093/nar/5.10.3523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McCarty K. S., Jr, Vollmer R. T., McCarty K. S. Improved computer program data for the resolution and fractionation of macromolecules by isokinetic sucrose density gradient sedimentation. Anal Biochem. 1974 Sep;61(1):165–183. doi: 10.1016/0003-2697(74)90343-1. [DOI] [PubMed] [Google Scholar]
  31. McMaster G. K., Carmichael G. G. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4835–4838. doi: 10.1073/pnas.74.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McMillen J., Center M. S., Consigli R. A. Origin of the polyoma virus-associated endonuclease. J Virol. 1975 Jan;17(1):127–131. doi: 10.1128/jvi.17.1.127-131.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meneguzzi G., Chenciner N., Milanesi G. Transcription of nucleosomal DNA in SV40 minichromosomes by eukaryotic and prokaryotic RNA polymerases. Nucleic Acids Res. 1979 Jun 25;6(8):2947–2960. doi: 10.1093/nar/6.8.2947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Meneguzzi G., Pignatti P. F., Barbanti-Brodano G., Milanesi G. Minichromosome from BK virus as a template for transcription in vitro. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1126–1130. doi: 10.1073/pnas.75.3.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Müller U., Zentgraf H., Eicken I., Keller W. Higher order structure of simian virus 40 chromatin. Science. 1978 Aug 4;201(4354):406–415. doi: 10.1126/science.208155. [DOI] [PubMed] [Google Scholar]
  36. Nedospasov S. A., Bakayev V. V., Georgiev G. P. Chromosome of the mature virion of simian virus 40 contains H1 histone. Nucleic Acids Res. 1978 Aug;5(8):2847–2860. doi: 10.1093/nar/5.8.2847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nelson D., Perry M. E., Chalkley R. A correlation between nucleosome spacer region susceptibility to DNase I and histone acetylation. Nucleic Acids Res. 1979 Feb;6(2):561–574. doi: 10.1093/nar/6.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Polisky B., McCarthy B. Location of histones on simian virus 40 DNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2895–2899. doi: 10.1073/pnas.72.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ponder B. A., Crawford L. V. The arrangement of nucleosomes in nucleoprotein complexes from polyoma virus and SV40. Cell. 1977 May;11(1):35–49. doi: 10.1016/0092-8674(77)90315-4. [DOI] [PubMed] [Google Scholar]
  40. Reeves R., Jones A. Genomic transcriptional activity and the structure of chromatin. Nature. 1976 Apr 8;260(5551):495–500. doi: 10.1038/260495a0. [DOI] [PubMed] [Google Scholar]
  41. Seidman M., Garber E., Levine A. J. Parameters affecting the stability of SV40 virions during the extraction of nucleoprotein complexes. Virology. 1979 May;95(1):256–259. doi: 10.1016/0042-6822(79)90427-6. [DOI] [PubMed] [Google Scholar]
  42. Stein G. S., Spelsberg T. C., Kleinsmith L. J. Nonhistone chromosomal proteins and gene regulation. Science. 1974 Mar 1;183(4127):817–824. doi: 10.1126/science.183.4127.817. [DOI] [PubMed] [Google Scholar]
  43. Varshavsky A. J., Nedospasov S. A., Schmatchenko V. V., Bakayev V. V., Chumackov P. M., Georgiev G. P. Compact form of SV40 viral minichromosome is resistant to nuclease: possible implications for chromatin structure. Nucleic Acids Res. 1977 Oct;4(10):3303–3325. doi: 10.1093/nar/4.10.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Varshavsky A. J., Sundin O. H., Bohn M. J. SV40 viral minichromosome: preferential exposure of the origin of replication as probed by restriction endonucleases. Nucleic Acids Res. 1978 Oct;5(10):3469–3477. doi: 10.1093/nar/5.10.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Varshavsky A. J., Sundin O., Bohn M. A stretch of "late" SV40 viral DNA about 400 bp long which includes the origin of replication is specifically exposed in SV40 minichromosomes. Cell. 1979 Feb;16(2):453–466. doi: 10.1016/0092-8674(79)90021-7. [DOI] [PubMed] [Google Scholar]
  46. Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. doi: 10.1126/science.948749. [DOI] [PubMed] [Google Scholar]
  47. Williamson P., Felsenfeld G. Transcription of histone-covered T7 DNA by Escherichia coli RNA polymerase. Biochemistry. 1978 Dec 26;17(26):5695–5705. doi: 10.1021/bi00619a015. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES