Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1980 Sep;35(3):790–796. doi: 10.1128/jvi.35.3.790-796.1980

den V gene of bacteriophage T4 determines a DNA glycosylase specific for pyrimidine dimers in DNA.

P C Seawell, C A Smith, A K Ganesan
PMCID: PMC288873  PMID: 6252338

Abstract

Endonuclease V of bacteriophage T4 has been described as an enzyme, coded for by the denV gene, that incises UV-irradiated DNA. It has recently been proposed that incision of irradiated DNA by this enzyme and the analogous "correndonucleases" I and II of Micrococcus luteus requires the sequential action of a pyrimidine dimer-specific DNA glycosylase and an apyrimidinic/apurinic endonuclease. In support of this two-step mechanism, we found that our preparations of T4 endonuclease V contained a DNA glycosylase activity that produced alkali-labile sites in irradiated DNA and an apyrimidinic/apurinic endonuclease activity that converted these sites to nicks. Both activities could be detected in the presence of 10 mM EDTA. In experiments designed to determine which of the activities is coded by the denV gene, we found that the glycosylase was more heat labile in extracts of Escherichia coli infected with either of two thermosensitive denV mutants than in extracts of cells infected with wild-type T4. In contrast, apyrimidinic/apurinic endonuclease activity was no more heat labile in extracts of the former than in extracts of the latter. Our results indicate that the denV gene codes for a DNA glycosylase specific for pyrimidine dimers.

Full text

PDF
790

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cook K. H., Friedberg E. C. Measurement of thymine dimers in DNA by thin-layer chromatography. II. The use of one-dimensional systems. Anal Biochem. 1976 Jun;73(2):411–418. doi: 10.1016/0003-2697(76)90188-3. [DOI] [PubMed] [Google Scholar]
  2. Friedberg E. C. DNA repair of ultraviolet-irradiated bacteriophage T4. Photochem Photobiol. 1975 Apr;21(4):277–289. doi: 10.1111/j.1751-1097.1975.tb06670.x. [DOI] [PubMed] [Google Scholar]
  3. Friedberg E. C., King J. J. Endonucleolytic cleavage of UV-irradiated DNA controlled by the V+ gene in phage T4. Biochem Biophys Res Commun. 1969 Nov 6;37(4):646–651. doi: 10.1016/0006-291x(69)90859-6. [DOI] [PubMed] [Google Scholar]
  4. Friedberg E. C. Studies on the substrate specificity of the T 4 excision repair endonuclease. Mutat Res. 1972 Jun;15(2):113–123. doi: 10.1016/0027-5107(72)90024-3. [DOI] [PubMed] [Google Scholar]
  5. Gossard F., Verly W. G. Properties of the main endonuclease specific for apurinic sites of Escherichia coli (endonuclease VI). Mechanism of apurinic site excision from DNA. Eur J Biochem. 1978 Jan 16;82(2):321–332. doi: 10.1111/j.1432-1033.1978.tb12026.x. [DOI] [PubMed] [Google Scholar]
  6. Grossman L., Riazuddin S., Haseltine W. A., Lindan C. Nucleotide excision repair of damaged DNA. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):947–955. doi: 10.1101/sqb.1979.043.01.104. [DOI] [PubMed] [Google Scholar]
  7. Haseltine W. A., Gordon L. K., Lindan C. P., Grafstrom R. H., Shaper N. L., Grossman L. Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature. 1980 Jun 26;285(5767):634–641. doi: 10.1038/285634a0. [DOI] [PubMed] [Google Scholar]
  8. Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
  9. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–192. doi: 10.1016/s0079-6603(08)60800-4. [DOI] [PubMed] [Google Scholar]
  10. Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
  11. Minton K., Durphy M., Taylor R., Friedberg E. C. The ultraviolet endonuclease of bacteriophage T4. Further characterization. J Biol Chem. 1975 Apr 25;250(8):2823–2829. [PubMed] [Google Scholar]
  12. Nishida Y., Yasuda S., Sekiguchi M. Repair of DNA damaged by methyl methanesulfonate in bacteriophage T4. Biochim Biophys Acta. 1976 Aug 18;442(2):208–215. doi: 10.1016/0005-2787(76)90491-3. [DOI] [PubMed] [Google Scholar]
  13. Rahn R. O., Landry L. C., Carrier W. L. Formation of chain breaks and thymine dimers in DNA upon photosensitization at 313 nm with acetophenone, acetone, or benzophenone. Photochem Photobiol. 1974 Jan;19(1):75–78. doi: 10.1111/j.1751-1097.1974.tb06476.x. [DOI] [PubMed] [Google Scholar]
  14. Riazuddin S., Grossman L. Micrococcus luteus correndonucleases. II. Mechanism of action of two endonucleases specific for DNA containing pyrimidine dimers. J Biol Chem. 1977 Sep 25;252(18):6287–6293. [PubMed] [Google Scholar]
  15. Seawell P. C., Simon T. J., Ganesan A. K. Binding of T4 endonuclease V to deoxyribonucleic acid irradiated with ultraviolet light. Biochemistry. 1980 Apr 15;19(8):1685–1691. doi: 10.1021/bi00549a026. [DOI] [PubMed] [Google Scholar]
  16. Sutcliffe J. G. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):77–90. doi: 10.1101/sqb.1979.043.01.013. [DOI] [PubMed] [Google Scholar]
  17. Wood W. B., Revel H. R. The genome of bacteriophage T4. Bacteriol Rev. 1976 Dec;40(4):847–868. doi: 10.1128/br.40.4.847-868.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yasuda S., Sekiguchi M. Further purification and characterization of T4 endonuclease V. Biochim Biophys Acta. 1976 Aug 18;442(2):197–207. doi: 10.1016/0005-2787(76)90490-1. [DOI] [PubMed] [Google Scholar]
  19. Yasuda S., Sekiguchi M. T4 endonuclease involved in repair of DNA. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1839–1845. doi: 10.1073/pnas.67.4.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES