Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1992 Apr;66(4):1907–1914. doi: 10.1128/jvi.66.4.1907-1914.1992

The Hantaan virus M-segment glycoproteins G1 and G2 can be expressed independently.

M N Pensiero 1, J Hay 1
PMCID: PMC288978  PMID: 1548747

Abstract

The two glycoproteins of Hantaan virus (HTV), G1 and G2, are encoded as a continuous single open reading frame in the M segment of the virion RNA. They are believed to be synthesized contemporaneously via a polypeptide precursor which is then processed to yield two glycoproteins, both of which appear in the Golgi complex of the cell. To study the properties of G1 and G2 as separate entities, we have constructed vaccinia virus recombinants which contain the sequences for each glycoprotein individually. Both glycoproteins made from these recombinants appear normal on sodium dodecyl sulfate-polyacrylamide gels compared with HTV products made in virus-infected cells. Interestingly, in the independently expressed G2 recombinant, a stretch of hydrophobic amino acids preceding the mature G2 N terminus appears to contain the signals necessary for translocation across membranes and proper glycosylation; partial deletion of this hydrophobic sequence results in production of an nonglycosylated form of G2. Thus, both G1 and G2 appear able to be expressed in an authentic fashion quite independently of each other, using their own signal sequences. In addition, it appears that the G1 from vaccinia virus recombinants contains the motif(s) necessary for cellular targeting of the HTV glycoproteins, while G2 from vaccinia virus recombinants remains strongly associated with the endoplasmic reticulum. In contrast, cells doubly infected with G1-vaccinia virus and G2-vaccinia virus recombinants show the G2 in a predominantly perinuclear (Golgi-like) distribution, presumably targeted there through association with G1. A carboxy-terminal deletion of G1 (2-43-Vac), which lacks 82 amino acids proximal to the start of the mature G2, retains a Golgi-like distribution.

Full text

PDF
1907

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arikawa J., Lapenotiere H. F., Iacono-Connors L., Wang M. L., Schmaljohn C. S. Coding properties of the S and the M genome segments of Sapporo rat virus: comparison to other causative agents of hemorrhagic fever with renal syndrome. Virology. 1990 May;176(1):114–125. doi: 10.1016/0042-6822(90)90236-k. [DOI] [PubMed] [Google Scholar]
  2. Baek L. J., Yanagihara R., Gibbs C. J., Jr, Miyazaki M., Gajdusek D. C. Leakey virus: a new hantavirus isolated from Mus musculus in the United States. J Gen Virol. 1988 Dec;69(Pt 12):3129–3132. doi: 10.1099/0022-1317-69-12-3129. [DOI] [PubMed] [Google Scholar]
  3. Chen S. Y., Matsuoka Y., Compans R. W. Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology. 1991 Jul;183(1):351–365. doi: 10.1016/0042-6822(91)90148-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Childs J. E., Glass G. E., Korch G. W., Arthur R. R., Shah K. V., Glasser D., Rossi C., Leduc J. W. Evidence of human infection with a rat-associated Hantavirus in Baltimore, Maryland. Am J Epidemiol. 1988 Apr;127(4):875–878. doi: 10.1093/oxfordjournals.aje.a114871. [DOI] [PubMed] [Google Scholar]
  5. Childs J. E., Korch G. W., Smith G. A., Terry A. D., Leduc J. W. Geographical distribution and age related prevalence of antibody to Hantaan-like virus in rat populations of Baltimore, Maryland, USA. Am J Trop Med Hyg. 1985 Mar;34(2):385–387. doi: 10.4269/ajtmh.1985.34.385. [DOI] [PubMed] [Google Scholar]
  6. Christen L., Seto J., Niles E. G. Superinfection exclusion of vaccinia virus in virus-infected cell cultures. Virology. 1990 Jan;174(1):35–42. doi: 10.1016/0042-6822(90)90051-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forthal D. N., Bauer S. P., McCormick J. B. Antibody to hemorrhagic fever with renal syndrome viruses (Hantaviruses) in the United States. Am J Epidemiol. 1987 Dec;126(6):1210–1213. doi: 10.1093/oxfordjournals.aje.a114760. [DOI] [PubMed] [Google Scholar]
  8. Giebel L. B., Stohwasser R., Zöller L., Bautz E. K., Darai G. Determination of the coding capacity of the M genome segment of nephropathia epidemica virus strain Hällnäs B1 by molecular cloning and nucleotide sequence analysis. Virology. 1989 Oct;172(2):498–505. doi: 10.1016/0042-6822(89)90192-x. [DOI] [PubMed] [Google Scholar]
  9. Guan J. L., Machamer C. E., Rose J. K. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell. 1985 Sep;42(2):489–496. doi: 10.1016/0092-8674(85)90106-0. [DOI] [PubMed] [Google Scholar]
  10. Jackson M. R., Nilsson T., Peterson P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990 Oct;9(10):3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klausner R. D., Sitia R. Protein degradation in the endoplasmic reticulum. Cell. 1990 Aug 24;62(4):611–614. doi: 10.1016/0092-8674(90)90104-m. [DOI] [PubMed] [Google Scholar]
  12. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  13. Kuismanen E., Bång B., Hurme M., Pettersson R. F. Uukuniemi virus maturation: immunofluorescence microscopy with monoclonal glycoprotein-specific antibodies. J Virol. 1984 Jul;51(1):137–146. doi: 10.1128/jvi.51.1.137-146.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuroki K., Russnak R., Ganem D. Novel N-terminal amino acid sequence required for retention of a hepatitis B virus glycoprotein in the endoplasmic reticulum. Mol Cell Biol. 1989 Oct;9(10):4459–4466. doi: 10.1128/mcb.9.10.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LeDuc J. W., Smith G. A., Johnson K. M. Hantaan-like viruses from domestic rats captured in the United States. Am J Trop Med Hyg. 1984 Sep;33(5):992–998. doi: 10.4269/ajtmh.1984.33.992. [DOI] [PubMed] [Google Scholar]
  16. Lee H. W., Seong I. W., Baek L. J., McLeod D. A., Seo S. S., Kang C. Y. Positive serological evidence that Hantaan virus, the etiologic agent of hemorrhagic fever with renal syndrome, is endemic in Canada. Can J Microbiol. 1984 Sep;30(9):1137–1140. doi: 10.1139/m84-178. [DOI] [PubMed] [Google Scholar]
  17. Lee P. W., Gibbs C. J., Jr, Gajdusek D. C., Yanagihara R. Serotypic classification of hantaviruses by indirect immunofluorescent antibody and plaque reduction neutralization tests. J Clin Microbiol. 1985 Dec;22(6):940–944. doi: 10.1128/jcm.22.6.940-944.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lubben T. H., Bansberg J., Keegstra K. Stop-transfer regions do not halt translocation of proteins into chloroplasts. Science. 1987 Nov 20;238(4830):1112–1114. doi: 10.1126/science.238.4830.1112. [DOI] [PubMed] [Google Scholar]
  19. Machamer C. E., Florkiewicz R. Z., Rose J. K. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol Cell Biol. 1985 Nov;5(11):3074–3083. doi: 10.1128/mcb.5.11.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nilsson T., Jackson M., Peterson P. A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell. 1989 Aug 25;58(4):707–718. doi: 10.1016/0092-8674(89)90105-0. [DOI] [PubMed] [Google Scholar]
  21. Pensiero M. N., Jennings G. B., Schmaljohn C. S., Hay J. Expression of the Hantaan virus M genome segment by using a vaccinia virus recombinant. J Virol. 1988 Mar;62(3):696–702. doi: 10.1128/jvi.62.3.696-702.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Persson R., Pettersson R. F. Formation and intracellular transport of a heterodimeric viral spike protein complex. J Cell Biol. 1991 Jan;112(2):257–266. doi: 10.1083/jcb.112.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Poruchynsky M. S., Tyndall C., Both G. W., Sato F., Bellamy A. R., Atkinson P. H. Deletions into an NH2-terminal hydrophobic domain result in secretion of rotavirus VP7, a resident endoplasmic reticulum membrane glycoprotein. J Cell Biol. 1985 Dec;101(6):2199–2209. doi: 10.1083/jcb.101.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Päbo S., Bhat B. M., Wold W. S., Peterson P. A. A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell. 1987 Jul 17;50(2):311–317. doi: 10.1016/0092-8674(87)90226-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmaljohn C. S., Chu Y. K., Schmaljohn A. L., Dalrymple J. M. Antigenic subunits of Hantaan virus expressed by baculovirus and vaccinia virus recombinants. J Virol. 1990 Jul;64(7):3162–3170. doi: 10.1128/jvi.64.7.3162-3170.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schmaljohn C. S., Hasty S. E., Harrison S. A., Dalrymple J. M. Characterization of Hantaan virions, the prototype virus of hemorrhagic fever with renal syndrome. J Infect Dis. 1983 Dec;148(6):1005–1012. doi: 10.1093/infdis/148.6.1005. [DOI] [PubMed] [Google Scholar]
  27. Schmaljohn C. S., Hasty S. E., Rasmussen L., Dalrymple J. M. Hantaan virus replication: effects of monensin, tunicamycin and endoglycosidases on the structural glycoproteins. J Gen Virol. 1986 Apr;67(Pt 4):707–717. doi: 10.1099/0022-1317-67-4-707. [DOI] [PubMed] [Google Scholar]
  28. Schmaljohn C. S. Nucleotide sequence of the L genome segment of Hantaan virus. Nucleic Acids Res. 1990 Nov 25;18(22):6728–6728. doi: 10.1093/nar/18.22.6728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schmaljohn C. S., Schmaljohn A. L., Dalrymple J. M. Hantaan virus M RNA: coding strategy, nucleotide sequence, and gene order. Virology. 1987 Mar;157(1):31–39. doi: 10.1016/0042-6822(87)90310-2. [DOI] [PubMed] [Google Scholar]
  30. Shin J., Dunbrack R. L., Jr, Lee S., Strominger J. L. Signals for retention of transmembrane proteins in the endoplasmic reticulum studied with CD4 truncation mutants. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1918–1922. doi: 10.1073/pnas.88.5.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stirzaker S. C., Both G. W. The signal peptide of the rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell. 1989 Mar 10;56(5):741–747. doi: 10.1016/0092-8674(89)90677-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES