Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1959 May;77(5):623–629. doi: 10.1128/jb.77.5.623-629.1959

DEATH OF BACTERIA IN GROWING CULTURE1

Arthur L Koch a,2
PMCID: PMC290431  PMID: 13654228

Full text

PDF
623

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTLER J. A., HUNTER G. D. Stimulation by ribonucleic acid of induced beta-galactosidase formation in Bacillus megaterium. Biochim Biophys Acta. 1956 May;20(2):405–406. doi: 10.1016/0006-3002(56)90312-2. [DOI] [PubMed] [Google Scholar]
  2. FUJISAWA Y., SIBATANI A. Is there any quantitative relationship between the synthesis and the breakdown of nucleic acids in living cells? Experientia. 1954 Apr 15;10(4):178–180. doi: 10.1007/BF02157200. [DOI] [PubMed] [Google Scholar]
  3. HALVORSON H. Intracellular protein and nucleic acid turnover in resting yeast cells. Biochim Biophys Acta. 1958 Feb;27(2):255–266. doi: 10.1016/0006-3002(58)90332-9. [DOI] [PubMed] [Google Scholar]
  4. HERSHEY A. D. Conservation of nucleic acids during bacterial growth. J Gen Physiol. 1954 Nov 20;38(2):145–148. doi: 10.1085/jgp.38.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOGNESS D. S., COHN M., MONOD J. Studies on the induced synthesis of beta-galactosidase in Escherichia coli: the kinetics and mechanism of sulfur incorporation. Biochim Biophys Acta. 1955 Jan;16(1):99–116. doi: 10.1016/0006-3002(55)90188-8. [DOI] [PubMed] [Google Scholar]
  6. Hegarty C. P., Weeks O. B. Sensitivity of Escherichia coli to Cold-Shock during the Logarithmic Growth Phase. J Bacteriol. 1940 May;39(5):475–484. doi: 10.1128/jb.39.5.475-484.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KELNER A. Growth, respiration, and nucleic acid synthesis in ultraviolet-irradiated and in photoreactivated Escherichia coli. J Bacteriol. 1953 Mar;65(3):252–262. doi: 10.1128/jb.65.3.252-262.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KOCH A. L. Biochemical studies of virus reproduction. XI. Acid-soluble purine metabolism. J Biol Chem. 1953 Jul;203(1):227–237. [PubMed] [Google Scholar]
  9. KOCH A. L., LAMONT W. A. The metabolism of methylpurines by Escherichia coli. II. Enzymatic studies. J Biol Chem. 1956 Mar;219(1):189–201. [PubMed] [Google Scholar]
  10. KOCH A. L., LEVY H. R. Protein turnover in growing cultures of Escherichia coli. J Biol Chem. 1955 Dec;217(2):947–957. [PubMed] [Google Scholar]
  11. KOCH A. L. The kinetics of gycine incorporation by Escherichia coli. J Biol Chem. 1955 Dec;217(2):931–945. [PubMed] [Google Scholar]
  12. KRAMER M., STRAUB F. B. Role of specific nucleic acid in induced enzyme synthesis. Biochim Biophys Acta. 1956 Aug;21(2):401–403. doi: 10.1016/0006-3002(56)90041-5. [DOI] [PubMed] [Google Scholar]
  13. Kelly C. D., Rahn O. The Growth Rate of Individual Bacterial Cells. J Bacteriol. 1932 Feb;23(2):147–153. doi: 10.1128/jb.23.2.147-153.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LABAW L. W., MOSLEY V. M., WYCKOFF R. W. G. Radioactive studies of the phosphorus metabolism of Escherichia coli. J Bacteriol. 1950 Feb;59(2):251–262. doi: 10.1128/jb.59.2.251-262.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MANDELSTAM J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):110–119. doi: 10.1042/bj0690110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MANDELSTAM J. Turnover of protein in starved bacteria and its relationship to the induced synthesis of enzyme. Nature. 1957 Jun 8;179(4571):1179–1181. doi: 10.1038/1791179a0. [DOI] [PubMed] [Google Scholar]
  17. Maaløe O., Watson J. D. The Transfer of Radioactive Phosphorus From Parental to Progeny Phage. Proc Natl Acad Sci U S A. 1951 Aug;37(8):507–513. doi: 10.1073/pnas.37.8.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NEIDHARDT F. C., GROS F. Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of chloromycetin. Biochim Biophys Acta. 1957 Sep;25(3):513–520. doi: 10.1016/0006-3002(57)90521-8. [DOI] [PubMed] [Google Scholar]
  19. PODOLSKY R. J. Protein degradation in bacteria. Arch Biochem Biophys. 1953 Aug;45(2):327–340. doi: 10.1016/s0003-9861(53)80010-x. [DOI] [PubMed] [Google Scholar]
  20. ROTMAN B., SPIEGELMAN S. On the origin of the carbon in the induced synthesis beta-galactosidase in Escherichia coli. J Bacteriol. 1954 Oct;68(4):419–429. doi: 10.1128/jb.68.4.419-429.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SIDDIQI M. S. H., KOZLOFF L. M., PUTNAM F. W., EVANS E. A., Jr Biochemical studies of virus reproduction. IX. Nature of the host cell contributions. J Biol Chem. 1952 Nov;199(1):165–176. [PubMed] [Google Scholar]
  22. Wilson G. S. The Proportion of Viable Bacteria in Young Cultures with Especial Reference to the Technique Employed in Counting. J Bacteriol. 1922 Jul;7(4):405–446. doi: 10.1128/jb.7.4.405-446.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES