Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1962 Apr;41(4):779–792. doi: 10.1172/JCI104536

EFFECTS OF SULFHYDRYL INHIBITION ON RED BLOOD CELLS. I. MECHANISM OF HEMOLYSIS*

Harry S Jacob 1, James H Jandl 1
PMCID: PMC290981  PMID: 14450644

Full text

PDF
779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN D. W., JANDL J. H. Oxidative hemolysis and precipitation of hemoglobin. II. Role of thiols in oxidant drug action. J Clin Invest. 1961 Mar;40:454–475. doi: 10.1172/JCI104273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENESCH R. E., BENESCH R. Relation between erythrocyte integrity and sulfhydryl groups. Arch Biochem Biophys. 1954 Jan;48(1):38–42. doi: 10.1016/0003-9861(54)90302-1. [DOI] [PubMed] [Google Scholar]
  3. BEUTLER E., DERN R. J., FLANAGAN C. L., ALVING A. S. The hemolytic effect of primaquine. VII. Biochemical studies of drug-sensitive erythrocytes. J Lab Clin Med. 1955 Feb;45(2):286–295. [PubMed] [Google Scholar]
  4. BEUTLER E. The glutathione instability of drug-sensitive red cells; a new method for the in vitro detection of drug sensitivity. J Lab Clin Med. 1957 Jan;49(1):84–95. [PubMed] [Google Scholar]
  5. CECIL R., McPHEE J. R. The sulfur chemistry of proteins. Adv Protein Chem. 1959;14:255–389. doi: 10.1016/s0065-3233(08)60613-0. [DOI] [PubMed] [Google Scholar]
  6. CLARKSON E. M., MAIZELS M. Distribution of phosphatases in human erythrocytes. J Physiol. 1952 Jan 28;116(1):112–128. doi: 10.1113/jphysiol.1952.sp004693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DICK D. A. The effect of the anomalous osmotic coefficient of haemoglobin on the osmotic behaviour of erythrocytes. Exp Cell Res. 1958 Jun;14(3):608–611. doi: 10.1016/0014-4827(58)90165-4. [DOI] [PubMed] [Google Scholar]
  8. ECKEL R. E. Potassium exchange in human erythrocytes. I. General aspects of the fluoride effect. J Cell Physiol. 1958 Feb;51(1):81–108. doi: 10.1002/jcp.1030510106. [DOI] [PubMed] [Google Scholar]
  9. ELDER H. A., MORTENSEN R. A. The incorporation of labeled glycine into erythrocyte glutathione. J Biol Chem. 1956 Jan;218(1):261–267. [PubMed] [Google Scholar]
  10. FEGLER G. Relationship between reduced glutathione content and spontaneous haemolysis in shed blood. Nature. 1952 Oct 11;170(4328):624–625. doi: 10.1038/170624a0. [DOI] [PubMed] [Google Scholar]
  11. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GREEN H., BARROW P., GOLDBERG B. Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J Exp Med. 1959 Nov 1;110:699–713. doi: 10.1084/jem.110.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GREEN J. W., PARPART A. K. The effect of metabolic poisons on potassium loss from rabbit red cells. J Cell Physiol. 1953 Oct;42(2):191–202. doi: 10.1002/jcp.1030420204. [DOI] [PubMed] [Google Scholar]
  14. GRUNERT R. R., PHILLIPS P. H. A modification of the nitroprusside method of analysis for glutathione. Arch Biochem. 1951 Feb;30(2):217–225. [PubMed] [Google Scholar]
  15. GURD F. R., MADSEN N. B. The interaction of muscle phosphorylase with p-chloromercuribenzoate. III. The reversible dissociation of phosphorylase. J Biol Chem. 1956 Dec;223(2):1075–1087. [PubMed] [Google Scholar]
  16. HANES C. S., HIRD F. J. R. Synthesis of peptides in enzymic reactions involving glutathione. Nature. 1950 Aug 19;166(4216):288–292. doi: 10.1038/166288a0. [DOI] [PubMed] [Google Scholar]
  17. HARLEY J. D., MAUER A. M. Studies on the formation of Heinz bodies. II. The nature and significance of Heinz bodies. Blood. 1961 Apr;17:418–433. [PubMed] [Google Scholar]
  18. Hauschka T., Toennies G., Swain A. P. THE MECHANISM OF GROWTH INHIBITION BY HEXENOLACTONE. Science. 1945 Apr 13;101(2624):383–385. doi: 10.1126/science.101.2624.383-a. [DOI] [PubMed] [Google Scholar]
  19. INGRAM V. M. Sulphydryl groups in haemoglobins. Biochem J. 1955 Apr;59(4):653–661. doi: 10.1042/bj0590653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. JANDL J. H., CASTLE W. B. Agglutination of sensitized red cells by large anisometric molecules. J Lab Clin Med. 1956 May;47(5):669–685. [PubMed] [Google Scholar]
  21. JANDL J. H., ENGLE L. K., ALLEN D. W. Oxidative hemolysis and precipitation of hemoglobin. I. Heinz body anemias as an acceleration of red cell aging. J Clin Invest. 1960 Dec;39:1818–1836. doi: 10.1172/JCI104206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. JANDL J. H., SIMMONS R. L. The agglutination and sensitization of red cells by metallic cations: interactions between multivalent metals and the red-cell membrane. Br J Haematol. 1957 Jan;3(1):19–38. doi: 10.1111/j.1365-2141.1957.tb05768.x. [DOI] [PubMed] [Google Scholar]
  23. KRIMSKY I., RACKER E. Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1952 Oct;198(2):721–729. [PubMed] [Google Scholar]
  24. MAIZELS M. Factors in the active transport of cations. J Physiol. 1951 Jan;112(1-2):59–83. doi: 10.1113/jphysiol.1951.sp004509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. NAKAO M., NAKAO T., YAMAZOE S. Adenosine triphosphate and maintenance of shape of the human red cells. Nature. 1960 Sep 10;187:945–946. doi: 10.1038/187945a0. [DOI] [PubMed] [Google Scholar]
  26. PATTERSON J. W., LAZAROW A. Determination of glutathione. Methods Biochem Anal. 1955;2:259–278. doi: 10.1002/9780470110188.ch9. [DOI] [PubMed] [Google Scholar]
  27. PONDER E., PONDER R. V. The inhibition of hemolysis, as studied by the technique used for investigating progressive reactions, and by a technique using radioactive hemolysins. J Gen Physiol. 1956 Sep 20;40(1):37–46. doi: 10.1085/jgp.40.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  29. RAPOPORT S., SCHEUCH D. Glutathione stability and pyrophosphatase activity in reticulocytes; direct evidence for the importance of glutathione for the enzyme status in intact cells. Nature. 1960 Jun 18;186:967–968. doi: 10.1038/186967a0. [DOI] [PubMed] [Google Scholar]
  30. ROTHSTEIN A. Cell membrane as site of action of heavy metals. Fed Proc. 1959 Dec;18:1026–1038. [PubMed] [Google Scholar]
  31. SANSONE G., SEGNI G. L'instabilità del glutatione ematico nel favismo; utilizzazione di un test selettivo, introduzione al problema genetico. Boll Soc Ital Biol Sper. 1957 Jul;33(7):1057–1060. [PubMed] [Google Scholar]
  32. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  33. SHAHIDI N. T., DIAMOND L. K. Enzyme deficiency in erythrocytes in congenital nonspherocytic hemolytic anemia. Pediatrics. 1959 Aug;24(2):245–253. [PubMed] [Google Scholar]
  34. SHEETS R. F., HAMILTON H. E. A reversible effect on the metabolism of human erythrocytes by p-chloromercuribenzoic acid and N-ethyl maleimide. J Lab Clin Med. 1958 Jul;52(1):138–143. [PubMed] [Google Scholar]
  35. SHEETS R. F., HAMILTON H. E., DEGOWIN E. L. Hemolysis of human erythrocytes by a sulfhydryl inhibitor, p-chloromercuribenzoic acid. Proc Soc Exp Biol Med. 1956 Mar;91(3):423–427. doi: 10.3181/00379727-91-22283. [DOI] [PubMed] [Google Scholar]
  36. SOLOMON A. K. Red cell membrane structure and ion transport. J Gen Physiol. 1960 May;43:1–15. doi: 10.1085/jgp.43.5.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. SOLOMON A. K. The permeability of the human erythrocyte to sodium and potassium. J Gen Physiol. 1952 May;36(1):57–110. doi: 10.1085/jgp.36.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SZEINBERG A., ASHER Y., SHEBA C. Studies on glutathione stability in erythrocytes of cases with past history of favism or sulfa-drug-induced hemolysis. Blood. 1958 Apr;13(4):348–358. [PubMed] [Google Scholar]
  39. TSEN C. C., COLLIER H. B. The relationship between the glutathione content of rat erythrocytes and their hemolysis by various agents in vitro. Can J Biochem Physiol. 1960 Sep;38:981–987. [PubMed] [Google Scholar]
  40. WEED R., EBER J., ROTHSTEIN A. Effects of Primaquine and other related compounds on the red blood cell membrane. I. Sodium ion and potassium ion permeability in normal human cells. J Clin Invest. 1961 Jan;40:130–139. doi: 10.1172/JCI104226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. ZINKHAM W. H., LENHARD R. E., Jr Metabolic abnormalities of erythrocytes from patients with congenital nonspherocytic hemolytic anemia. J Pediatr. 1959 Sep;55:319–336. doi: 10.1016/s0022-3476(59)80228-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES