Skip to main content
International Journal of Peptides logoLink to International Journal of Peptides
. 2010 Apr 27;2010:248948. doi: 10.1155/2010/248948

Ghrelin in Diabetes and Metabolic Syndrome

Leena Pulkkinen 1,*, Olavi Ukkola 2, Marjukka Kolehmainen 1, Matti Uusitupa 1
PMCID: PMC2911592  PMID: 20700400

Abstract

Metabolic syndrome is a cluster of related risk factors for cardiovascular disease, type 2 diabetes and liver disease. Obesity, which has become a global public health problem, is one of the major risk factors for development of metabolic syndrome and type 2 diabetes. Obesity is a complex disease, caused by the interplay between environmental and genetic factors. Ghrelin is one of the circulating peptides, which stimulates appetite and regulates energy balance, and thus is one of the candidate genes for obesity and T2DM. During the last years both basic research and genetic association studies have revealed association between the ghrelin gene and obesity, metabolic syndrome or type 2 diabetes

1. Introduction

A great deal of evidence suggests that ghrelin is involved in the development of metabolic syndrome and type 2 diabetes (T2DM). Ghrelin plays also an important role in cardiovascular system. We have examined ghrelin and its genetic variation with respect to the occurrence of the components of metabolic syndrome and the risk of T2DM. In this paper we give an overview of what is known about the role of ghrelin in obesity, insulin resistance, T2DM, and cardiovascular disease, and how ghrelin is involved in the regulation of glucose, insulin, adipose tissue, and cardiovascular metabolism. We also discuss the putative role of genetic variation in the ghrelin and ghrelin receptor genes in metabolic syndrome and T2DM.

2. Ghrelin Concentrations in Obesity, Insulin Resistance, and Type 2 Diabetes Mellitus

The recent literature suggests that in addition to food intake and energy balance, ghrelin also controls glucose metabolism [1]. Furthermore, current evidence suggests that ghrelin could contribute to the metabolic syndrome [1]. It has been shown that ghrelin concentrations are reduced in different pathophysiological conditions including obesity, type 2 diabetes, and other conditions with metabolic disturbances [2, 3].

Ghrelin is a target for posttranslational modifications, which results in two different forms of circulating ghrelin: unacylated ghrelin (UAG) and acylated ghrelin (AG), in which Ser 3 is octanoylated [4]. A relative excess of AG compared to UAG has been reported in insulin resistance and related conditions [3] raising the possibility that UAG/AG ratio could play a role in development of metabolic syndrome.

Plasma ghrelin concentration has been shown to be lower in obese Caucasians when compared with lean Caucasians [2, 3, 5, 6], and in some studies higher AG concentrations have been reported in obese but otherwise healthy subjects compared to nonobese healthy subjects [3]. In persons with type 2 diabetes the fasting ghrelin concentrations are lower in obese than in lean persons and the similar ratio is with AG concentrations [7]. Circulating ghrelin concentrations are also reduced in healthy offspring of type 2 diabetic patients [8] indicating the presence of possible genetic component in the regulation of ghrelin plasma levels. When the ghrelin concentrations were compared between lean Caucasians and lean Pima Indians, it was found that the concentration was significantly lower in Pima Indians, the population with high tendency to obesity and type 2 diabetes [5].

There are also differences in fasting and postprandial ghrelin concentrations in nondiabetic populations between lean and obese persons. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal weight [9] but not in obese subjects [10], which suggest that food intake fails to suppress ghrelin levels in obese humans [11].

Low ghrelin concentrations are also associated with higher prevalence of the metabolic syndrome with progressively lower ghrelin levels in relation to the number of components of the metabolic syndrome [1, 12]. This is mostly explained by higher BMI in subjects with lower ghrelin levels, because adiposity influences all other features of the metabolic syndrome [13, 5, 1214]. In fact, it has been shown that total plasma ghrelin as well as UAG concentrations are lower in obese patients with metabolic syndrome compared to nonobese counterparts [14]. Furthermore, among obese subjects, plasma ghrelin levels are lower in insulin resistant persons compared to insulin sensitive persons [15]. However, the concentrations of total ghrelin, AG, or UAG separately are not different between insulin sensitive and insulin resistant persons with similar body weight [1]. Among overweight and obese patients, the ratio of AG : UAG is lower in insulin sensitive than in insulin resistant subjects [3, 15].

Polycystic ovary syndrome (PCOS) is associated with adiposity and metabolic changes predisposing to insulin resistance and type 2 diabetes mellitus [1618]. Obese patients with PCOS have lower levels of ghrelin than BMI matched control subjects [19], although in another study no difference was observed in this regard [20].

3. Effect of Weight Loss on Ghrelin Concentration

It has been suggested that ghrelin is linked to excessive food intake in two ways. Firstly, the attenuated postprandial reduction in ghrelin levels may directly increase the length of time for which the subject feels hungry, and secondly, as a consequence of the elevated ghrelin levels, the speed of gastric emptying may not be reduced, and the resulting feeling of satiety not elicited [11]. Without these feelings of satiety, obese individuals eat more than they need, and thus gain weight [13].

So far, the majority of studies have focused on the effects of diet induced or combined exercise/diet weight loss on total ghrelin concentrations [2128]. These studies are very diverse, with different interventions, intervention periods, age and number of participants, and also inclusion criteria. Most studies have shown that weight reduction increases ghrelin concentrations in obese subjects [2123, 29] or the concentration is unchanged in overweight healthy adults or obese children after weight loss [24]. However, during weight maintenance after the weight loss, ghrelin levels tend to decrease back to the levels they were before weight loss [25]. Furthermore, an initial decrease along with weight loss and subsequent increase in plasma ghrelin has been reported [26]. Weight loss is also shown to result in increased ghrelin concentrations in normal weight individuals [27]. Only a few studies have been conducted to investigate the exclusive effect of weight loss through exercise intervention on plasma ghrelin levels. In general, these studies have shown either an increase [28] or no change on ghrelin concentrations [30].

4. Effect of Insulin and Glucose Concentrations on Ghrelin Secretion

Insulin is shown to inhibit ghrelin secretion in healthy normal-weight and overweight persons [15, 31, 32], and both oral and intravenous glucose loads are also shown to regulate ghrelin secretion in humans [3337]. Insulin and HOMA-IR are associated negatively with total ghrelin and UAG concentrations while AG had positive association [3]. Liu and coworkers developed recently a new reliable sandwich method for detection of AG and UAG separately. With this new assay they showed evidence that ghrelin acylation and secretion are regulated separately. The use of this method may facilitate more reliable detection of different ghrelin forms in future [38]. Physiological increases in insulin levels may play a key role in regulating postprandial plasma ghrelin concentrations, since meal-induced ghrelin suppression is absent in severe insulin deficiency [10]. An increase in insulin after the oral or intravenous glucose administration could contribute to the inhibitory effect of glucose on ghrelin concentrations. However, the administration of a combined pulse of glucose and insulin does not acutely suppress ghrelin levels [3639]. Reduction in ghrelin after intravenous glucose bolus in subjects with type 2 diabetes suggests that early insulin response does not affect plasma ghrelin [39]. Indeed, during euglycaemic clamp, an increase in insulin levels leads to suppression of ghrelin levels and is remained suppressed during subsequent hypoglycemia and even fell further during following hyperglycaemia. However, another study has shown that hyperinsulinaemia with concomitant hyperglycaemia at concentrations typically seen in insulin-resistant subjects does not affect plasma ghrelin but is decreased only at pharmacological insulin concentrations [40]. However, it is still unclear whether insulin and glucose per se play a direct inhibitory role in ghrelin secretion [16]. The decrease in ghrelin levels after an oral glucose load is modulated by sex, status of obesity, and level of insulin resistance [41]. Ghrelin concentrations are shown to be higher in women than in men. To support of this finding, ghrelin concentrations are shown to correlate positively with testosterone concentrations [41].

5. Effect of Ghrelin on Glucose and Insulin Metabolism

Above we discussed the associations of ghrelin with glucose and insulin levels. However, ghrelin may also participate in the regulation of glucose and insulin metabolism as discussed in this section in more detail. Because glucose and insulin metabolism are tightly connected, their effects are difficult to separate from each other.

A human study conducted recently in morbidly obese nondiabetic persons showed that administration of combination of AG and UAG reduced insulin concentrations significantly without any effect on glucose concentrations, while AG or UAG alone did not have any significant effects [42]. Based on this data, it was concluded that insulin sensitivity was improved in these persons [42]. It has been shown that specifically AG is responsible for improving insulin sensitivity, while UAG has opposite effects [43]. However, in another study conducted with healthy young persons showed that administration of ghrelin impairs insulin and glucose metabolism by increasing glucose concentrations and decreasing insulin levels [44], and a number of other studies have supported these findings [4548]

Acute ghrelin administration in humans increases plasma glucose levels by downregulation of insulin, and arginine is shown to amplify the hyperglycaemic effect of ghrelin which can be blocked by the administration of the GHS-R agonist D-(Lys3)-GHRP6. To support these findings, plasma ghrelin levels are shown to correlate negatively with insulin concentrations and are associated with fasting insulin levels, insulin resistance, and obesity [49, 50]. Specifically, AG is shown to be responsible for the decrease in insulin and a consequent rise in glucose levels [49]. It has been suggested that UAG alone has been suggested to be devoid of any endocrine effects but is able to antagonize the effects of AG on insulin secretion [51]. There is evidence that UAG has a specific functional role in insulin signaling since it has been shown to stimulate insulin secretion in pancreatic cell lines [52, 53]. Furthermore, the combination of AG and UAG may improve insulin sensitivity [51]. This has been shown in GH-deficient patients, in whom UAG prevents the rapid rise in insulin and glucose levels when coadministered with AG [51]. The hyperglycaemic effect of ghrelin could be mediated through activation of catecholamine-induced glycogenolysis or directly by acting on hepatocytes; where it may enhance gluconeogenesis [45, 54]. Interestingly, AG has been shown to stimulate glucose output by primary hepatocytes; whereas UAG mediates an inhibitory effect [49]. Moreover, it counteracts the stimulatory effect of AG on glucose release [49].

Ghrelin is shown to be expressed in pancreas both in rodents and humans [5557], where it may locally modulate insulin secretion. These findings suggest that ghrelin has a pathophysiological role in regulation of insulin release. Ghrelin is found to inhibit insulin release in rodents and in isolated islets in vitro [5860], to promote survival of both INS-1E β cell line and human islets of Langerhans [52] and to stimulate insulin secretion in pancreatic cell lines [52, 53]. Furthermore, ghrelin is shown to prevent cell death and apoptosis of HIT-T15 pancreatic β cell line [60]. Ghrelin treatment of neonatal rats exposed to streptozotocin attenuates the development of diabetes and is associated with increased islet neogenesis, suggesting that ghrelin might have a proliferative or cytoprotective effect on β cells [60]. In mice, ghrelin has also shown to hamper insulin's capacity to suppress endogenous glucose production; whereas it reinforces the action of insulin on glucose disposal [61]. Furthermore, simultaneous administration of UAG abolishes the inhibitory effect of ghrelin on hepatic insulin action [61].

6. Effect of Ghrelin on Adipose Tissue

Adipose tissue is one of the most important organs mediating metabolic effects by numerous adipokines and cytokines, which are secreted from adipose tissue [62]. There is increasing amount of evidence that also ghrelin may have an important role in modulating function of adipose tissue. Because obesity has a significant role in modulating the expression of ghrelin, it is important to know how ghrelin is involved in the regulation of adipocyte metabolism. Several studies have suggested that ghrelin may play an important role in adipogenesis and storage of energy in adipose tissue [6365]. Chronic ghrelin administration has been shown to increase body fat content in rodents and humans [63]. In visceral adipose tissue, ghrelin (AG and UAG) is shown to stimulate lipid accumulation by enhancing the expression of adipogenic genes including PPARg, SREBP1, acetyl-CoA carboxylase, fatty acid synthase lipoprotein lipase, perilipin, adipocyte determination and differentiation-dependent factor (ADD)1, and adipose protein 2/fatty acid binding protein (aP2) during adipocyte differentiation [66]. These functions might be mediated via AMPK pathway [67]. It has been demonstrated that infusion AG and UAG simultaneously in rats independently modulates adipocyte metabolism by inhibiting isoproterenol induced lipolysis [68], regulating adipogenesis [69, 70], suppressing noradrenalin release in brown adipose tissue [71], and promoting glucose and triglyceride uptake and antiapoptotic actions [65]. Ghrelin is also shown to stimulate lipogenesis and to inhibit lipid oxidation in white adipocytes; whereas in brown adipocytes central ghrelin infusion results in decreased expression of uncoupling proteins, molecules contributing to energy dissipation [69]. All of these findings strongly support the view that ghrelin may have an “energy saving” effects on adipose tissue.

In addition, Ghrelin has also been shown to stimulate adipogenesis in vitro [70, 93], and both AG and UAG directly promote bone marrow adipogenesis in vivo [70, 93]. However, Zang et al. have shown that ghrelin inhibits adipogenesis by stimulating cell proliferation in mouse adipocyte cell line [94]. Ghrelin also inhibits the expression of adiponectin. It is of note that the reduced concentrations of adiponectin have been implicated in the pathogenesis of insulin resistance and obesity [95]. Furthermore, ghrelin exerts a receptor-mediated stimulatory effect on leptin production of cultured rat white adipocytes [96].

7. Ghrelin and Immunomodulation

Given the wide distribution of functional GHSR on various immune cells, it was hypothesized that ghrelin may exert immunoregulatory effect on immune cell subpopulations [97]. In vitro, ghrelin treatment is shown to inhibit production of proinflammatory cytokines (interleukin IL1β, IL6, and TNFα by PBMCs via a GHSR-specific pathway [97]). It was further reported that ghrelin inhibits IL6 and TNFα mRNA expression in primary human T cells, which suggests a role for ghrelin in the transcriptional regulation of inflammatory cytokine expression [98].

8. Effects of Ghrelin on Cardiovascular System

Ghrelin has diverse cardiovascular effects, which are most probably ghrelin receptor mediated rather than GH mediated, since expression of ghrelin receptor has been reported in the cardiovascular system [99]. Administration of ghrelin in persons with metabolic syndrome is shown to improve endothelial function by preventing proatherogenic changes [100] and improving vasodilatation [101], by decreasing blood pressure (BP) without an increase in heart rate [102], and additional haemodynamic effects by increasing cardiac output [103]. Chronic subcutaneous administration of ghrelin in rats is shown to exert a therapeutic effect in heart failure by improving left ventricular dysfunction and attenuation of the development of cardiac cachexia [104], by improving left ventricular dysfunction and attenuating the development of left ventricular remodeling and cardiac cachexia in rats with CHF [105]. Plasma ghrelin concentrations are shown to correlate positively with carotid artery atherosclerosis [106]. In addition, ghrelin receptor is upregulated in heart muscle of patients suffering from end-stage heart failure [106].

Molecular mechanisms for the cardiovascular activity of ghrelin have been intensively studied in cell culture models [107, 108]. It has been demonstrated that ghrelin stimulates nitric oxide (NO) production both in cultured endothelial cells and in intact vessels [107, 108], while the NO synthesis can be blocked by NO synthase inhibitor (NOS) (N G nitro-L-arginine methyl ester), by phosphatidylinositol 3-kinase inhibitor (wortmannin) or by antagonist of ghrelin receptor (D-Lys3) [107]. Furthermore, ghrelin is shown to mediate NO production through phosphorylation of endothelial nitric oxide synthase (eNOS) [108], Akt, one of the main kinases involved also in insulin signaling pathway [107, 108] and AMP-activated protein kinase (AMPK), in endothelial cells and in intact vessels [108]. Based on these findings ghrelin uses partly insulin signaling pathway for production of NO. Furthermore, downregulation of GHSR-1 by siRNA blocks the NO production and phosphorylation of Akt and endothelial NOS indicating that these functions are mediated by GHSR-1 [107].

Togliatto and coworkers [109] studied separately the effects of AG and UAG on mobilization of endothelial progenitor cells (EPCs) in healthy humans, persons with T2DM, and in ob/ob mice. They found that the treatments had no effect in healthy human subjects. However systemic administration of UAG but not AG prevented diabetes-induced EPC damage by modulating the NAPDH oxidase regulatory protein Rac1 and improved their vasculogenic potential both in individuals with T2DM and ob/ob mice [109]. UAG also facilitated the recovery of mobilization of EPC. Crucial to EPC mobilization by UAG was the rescue of NO synthase phosphorylation by Akt. Furthermore, EPCs expressed UAG binding sites, which were not recognized by AG [108].

To support earlier findings above, Tesauro and coworkers [110] conducted a human study in persons with obesity and metabolic syndrome in order to test if exogenous ghrelin could improve the balance between NO and endothelin-1, a vasoconstrictor peptide produced by vascular endothelial cells. In the absence of ghrelin, the vasodilator response to BQ-123, an endothelin A receptor antagonist, was greater in patients than in controls; whereas infusion of NO synthase inhibitor induced smaller vasoconstriction in patients than in controls [110]. Exogenous ghrelin decreased the vasodilator response to BQ-123 and enhanced the magnitude of changes in forearm blood flow induced by NO synthase inhibitor in patients but not in controls [110]. The favorable effect of ghrelin on endothelin A-dependent vasoconstriction was likely related to the stimulation of NO production, because no change in the vascular effect of BQ-123 was observed after ghrelin in persons with metabolic syndrome during continuous infusion of the NO donor sodium nitroprusside. In patients with metabolic syndrome, ghrelin has benefits to normalize the balance between vasoconstrictor (endothelin 1) and vasodilating (NO) mediators, thus suggesting that this peptide has important peripheral actions to preserve vascular homeostasis in humans [110].

9. Ghrelin O-Acetyltransferase (GOAT)

The peptide hormone ghrelin is the only known protein modified with an O-linked octanoyl side group, which occurs on its third serine residue. This modification is crucial for ghrelin's physiological effects including regulation of feeding, adiposity, and insulin secretion [4]. It is no longer than two years ago when an enzyme ghrelin O-acyltransferase (GOAT), which links octanoate to Ser3 of ghrelin, was discovered by two different research groups [111, 112]. Human GOAT is able to acylate ghrelin also with other fatty acids, besides octanoate, ranging from acetate to tetradecanoid acid [112]. Analysis of the mouse genome revealed that GOAT belongs to a family of 16 hydrophobic membrane-bound acyltransferases and is the only member of this family that octanoylates Ser3 position of ghrelin peptide when coexpressed in cultured endocrine cell lines with prepro-ghrelin [111, 112]. Expression levels of gastric GOAT are the highest under ad libitum and are decreased with fasting, showing similar pattern of decrease to that of ghrelin [112]. GOAT expression is localized in ghrelin producing cells in gastric mucosa [112114] as well as in pancreas [111, 112]. It has been found that the genetic disruption of the GOAT gene in mice leads to complete absence of AG in circulation [112].

Kirchner and coworkers have recently studied the role of GOAT in regulating of the activity of ghrelin using different animal models [115]. They showed that GOAT functions as a gastric lipid sensor linking selected ingested nutrients with hypothalamic energy balance regulation via endocrine ghrelin system [115]. Animal models have shown that GOAT is required and sufficient to mediate the impact of dietary lipids on body adiposity, and that activation of the GOAT-ghrelin system is triggered by a lipid-rich environment rather than by caloric depreviation [115]. Specifically, sufficient dietary supply of medium chain triglycerides is important for ghrelin acylation [115].

The discovery of GOAT has provided possibilities to develop tools to study specific functional roles of the two different ghrelin forms, UAG and AG, in human health in more detail. For example, modification of its expression provides tools to study the function of different ghrelin forms and makes possible to develop drugs against obesity and related conditions.

10. Therapeutic Potential against Obesity and Insulin Resistance by Targeting GOAT/Ghrelin System

Increasing prevalence of obesity throughout the world is becoming an increasing health burden. Because obesity is a strong risk factor for development of cardiovascular diseases and T2DM, the development of strategies to combat obesity epidemic is urgently needed. AG and UAG forms of ghrelin as well as GOAT are attractive targets to develop pharmacological treatments for obesity and diabetes.

Pharmaceutical companies have started actively to develop drugs that can target orexigenic or obesity related functions of ghrelin, its receptor, or GOAT [116119]. Ghrelin receptor antagonists are shown to block GH secretion and thus improve the diabetic condition by promoting glucose-dependent insulin secretion and weight loss and suppressing appetite [120]. Peptide inverse agonist DLys3-GHRP6, which blocks GHRP induced GH secretion, is shown to reduce food intake and body weight. Furthermore, vaccination of mature rats or mouse with ghrelin immunoconjugates against AG decreases feed efficiency, adiposity, and body weight gain in relation to immune response elicited against AG [121, 122]. Recently, a new class of L-RNA-based hormone antagonists, the spiegelmers (SPMs), has been developed [123]. SPMs are L-isomer oligonucleotides that are stable in biological fluids, enabling long-lasting peptide neutralization after a single application [123]. This makes these compounds very useful for experimental purposes and possibly as therapeutic agents. Unlike classic hormone antagonists, SPMs do not interact with the receptor but bind with high affinity to their target molecule and prevent binding to the endogenous receptor. The antighrelin Spiegelmer NOX-B11-3 neutralizes the stimulatory effects on GH release and food intake in animal studies [124].

11. Genetic Association Studies of the Ghrelin and Ghrelin Receptor Genes

Several genome-wide scans have suggested that certain areas of the chromosome 3, the same chromosome where ghrelin and ghrelin receptor genes are located, might be linked with obesity or metabolic syndrome [72, 73]. Polymorphisms in the human GHRL gene and the 5′ flanking region have been intensively studied. The most studied exonic SNPs include the Leu72Met located in exon 3 and Arg51Gln, which is located in exon 3 within the last codon of the mature ghrelin protein and disrupts the recognition site of the endoprotease, leading to proteolytic cleavage of the carboxy-terminal 66 amino acids to produce mature ghrelin [74], Table 1. Most of the association studies are focused on metabolic syndrome and T2DM, which are summarized in Table 2. A number of studies have shown associations between GHRL SNPs and obesity or related traits, although the results are contradictory (see Table 2). The Met72 allele of GHRL has been associated with earlier age at onset of obesity and higher BMI [6, 74, 78, 87, 88, 91, 125, 126], but negative findings have also been reported [6, 74, 77, 78, 85, 89]. The −501A>C in the promoter region of the GHRL gene and the intronic +3056T>C polymorphisms has been shown to associate with obesity and related conditions [79, 81], while some studies have failed to find association with these SNPs [6, 79, 81, 85, 92, 127129].

Table 1.

Common names of GHRL SNPs with their corresponding rs-numbers.

NCBI RefSNP accession ID Position SNP location
rs1629816 −4427G>A Promoter
rs3755777 −1500C>G Promoter
rs26311 −1062G>C Promoter
rs26312 −994C>T Promoter
rs27647 −604G/A Promoter
rs26802 −501A/C Promoter
rs696217 Leu72Met Exon 3
rs2075356 3056T>C Intron 3
rs4684677 Gln90Leu Exon 4
rs35684 5179A>G 3′ region
rs2072578 9344G>A 3′ region

Table 2.

Associations of polymorphisms in the GHRL gene.

SNP Risk allele Association Subjects References
Leu72Met Met72 Lower age of onset of self-reported obesity 96 obese and 96 normal-weight Swedish women [72]

Leu72Met Met72 Higher frequency in Whites than in Blackslower BMI, fat mass, visceral fat, total TG and RQ; higher IGF-1 levels in Blacks 784 French-Canadian subjects (Quebec Family Study) 778 subjects (276 Blacks and 502 Whites; HERITAGE Family Study) [73]
Arg51Gln Gln51 Not observed among Blacks 1442 subjects (741 from obese registry, 701 from normal reference population; SOS)

Leu72Met Met72 Higher BMI, earlier age of onset of obesity and reduced first phase insulin secretion 70 tall and obese children [74]

Gln90Leu Gln90 Higher frequency in obese children, but also in underweight students 215 extremely obese German children and adolescents, 93 normal-weight students,134 underweight students, 44 normal-weight adults [75]

Leu72Met Met72 Lower serum creatinine and lipoprotein a levels 258 Finnish Caucasians with T2D and 522 controls [76]

Arg51Gln Gln51 Risk allele for hypertension and T2D; predictor of 2-h plasma glucose in OGTT; lower IGF-1 and higher IGFBP-1 concentrations in normotensives; lower AUC insulin 519 hypertensive and 526 normotensive Finnish Caucasians [77]

Leu72Met Met72 In obese/overweight: higher neonatal weight-for-age; earlier age at onset of obesity; higher IGF-1 concentration. 81 obese or overweight and 96 normal-weight Italian children and adolescents and 72 normal-weight young adults [6]

4427G>A G Diffuse large cell lymphoma 684 healthy controls and 308 North American subjects with non-Hodgkin Lymphoma [78]

Arg51Gln Gln51 Lower MetS frequencyHigher fasting glucose,TG, and frequency of MetS and lower HDL cholesterol 856 Old Order Amish from US [79]
Leu72Met Met72

Leu72Met Met72 More depressed and anxious in patients with methamphetamine dependence. No association with methamphetamine dependence 118 Koreans with methamphetamine dependence, 144 controls [80]

Leu72Met No association with obesity 222 obese Korean children [81]

−1500C>G
−1062G>C
−994C>T
Leu72Met
C Lower HDL cholesterol
All four SNPs: no association with T2D
760 T2D and 641 nondiabetic Koreans [82]

Leu72Met Leu72 Higher TG, fasting insulin and HOMA-IR. Higher fasting insulin and HOMA-IR 1420 Caucasians (500 normal weight and 920 overweight/obese) [83]
−604>C/T C

Leu72Met Met72 Lower allele frequency in diabetic nephropathy with renal dysfunction. Lower total cholesterol levels in patients with diabetic nephropathy with renal dysfunction 138 subjects with diabetic nephropathy, 69 diabetics without nephropathy [84]

Leu72Met Met72 Lower creatinine levels in diabetic group. No association with T2D 206 T2D, 80 controls [28]

−501A>C A Higher BMI 1045 Finnish subjects from the Oulu Project Elucidating Risk for Atherosclerosis (OPERA) study [85]

Leu72Met No association with weight loss 771 obese Caucasian Europeans [86]

Leu72Met Met72 Higher allele frequency in higher BMI group than in normal-weight group. Higher BMI, waist circumference, and change in body weight from age 18 2238 middle-aged and older Japanese people [87]
Leu72Met Met72 Lower BMI in CAD patients but no association with CAD, no association with hypertension, T2D, or dyslipidaemia 317 Chinese CAD patients, 323 controls [88]

Leu72Met Met72 Higher scores on Drive for Thinness-Body Dissatisfaction subscale 264 Japanese women [89]
3056T > C C Higher weight, BMI, fat mass, waist circumference, sum of skinfold thicknesses, self-reported past min and max BMIs and lower HDL chol

Arg51Gln
Leu72Met
Gln51 Higher cholesterol levels over time. Subjects with Gln51and /or Met72 lost body weight faster than patients with Arg51/Leu72 210 hemodialysed patients prospectively followed up to 15 months [90]

Leu72Met Met72 Persons with 72Met allele have lower risk to develop T2DM 507 persons with IGT: the Finnish diabetes prevention study [91]

−604G/A G Persons with the most common genotype combination of the SNPs 604G/-501A/, Leu72/GLN90 have significantly lower systolic and diastolic blood pressure at baseline and during the 3-year follow-up 507 persons with IGT: the Finnish diabetes prevention study [92]
−501A/C A
Leu72Met Leu72
GLN90Leu GLN90

In addition, ghrelin variations are also shown also to be associated with blood pressure [129].

Regarding the genetic association studies of GHSR SNPs, only a few studies have been reported so far. From these reports at least two have shown an association between GHSR SNPs and features of metabolic syndrome [75, 76], but most of the studies have shown negative results.

12. Take-Home Message

In terms of obesity, metabolic syndrome, and T2DM, ghrelin is very interesting hormone, which plays a crucial role in glucose and insulin metabolism and in development of obesity and insulin resistance. The knowledge on functions of ghrelin in peripheral tissues, such as pancreas, adipose, and vascular tissues has increased during the last few years. The recent discovery, the characterization of ghrelin-O-acyltransferase, GOAT has provided new challenges to develop drugs against obesity and T2D. The modification of GOAT expression provides tools to regulate the AG : UAG ratio and to study the specific roles of different ghrelin forms (AG and UAG) separately in human health. Regarding the positive cardiovascular effects of ghrelin, it is considered as a direct target for prevention of CVD.

Regarding the genetics of ghrelin and its receptors, more studies are needed to show whether and to what extent they are involved in the pathogenesis of metabolic syndrome and T2DM. In Genome wide association studies no confirmation has been achieved in this regard.

References

  • 1.Ukkola O. Ghrelin and metabolic disorders. Current Protein and Peptide Science. 2009;10(1):2–7. doi: 10.2174/138920309787315220. [DOI] [PubMed] [Google Scholar]
  • 2.Pöykkö SM, Kellokoski E, Hörkköe S, Kauma H, Kesäniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes. 2003;52(10):2546–2553. doi: 10.2337/diabetes.52.10.2546. [DOI] [PubMed] [Google Scholar]
  • 3.Barazzoni R, Zanetti M, Ferreira C, et al. Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. Journal of Clinical Endocrinology and Metabolism. 2007;92:3935–3940. doi: 10.1210/jc.2006-2527. [DOI] [PubMed] [Google Scholar]
  • 4.Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660. doi: 10.1038/45230. [DOI] [PubMed] [Google Scholar]
  • 5.Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–709. doi: 10.2337/diabetes.50.4.707. [DOI] [PubMed] [Google Scholar]
  • 6.Vivenza D, Rapa A, Castellino N, et al. Ghrelin gene polymorphisms and ghrelin, insulin, IGF-I, leptin and anthropometric data in children and adolescents. European Journal of Endocrinology. 2004;151(1):127–133. doi: 10.1530/eje.0.1510127. [DOI] [PubMed] [Google Scholar]
  • 7.Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. Journal of Clinical Endocrinology and Metabolism. 2002;87(1):240–244. doi: 10.1210/jcem.87.1.8129. [DOI] [PubMed] [Google Scholar]
  • 8.Ostergard T, Hansen TK, Nyholm B, et al. Circulating ghrelin concentrations are reduced in healthy offspring of type 2 diabetic subjects, and are increased in women independent of a family history of type 2 diabetes. Diabetologia. 2003;46(1):134–136. doi: 10.1007/s00125-002-0985-4. [DOI] [PubMed] [Google Scholar]
  • 9.Tschöp M, Wawarta R, Riepl RL, et al. Post-prandial decrease of circulating human ghrelin levels. Journal of Endocrinological Investigation. 2001;24(6):RC19–RC21. doi: 10.1007/BF03351037. [DOI] [PubMed] [Google Scholar]
  • 10.English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JPH. Food fails to suppress ghrelin levels in obese humans. Journal of Clinical Endocrinology and Metabolism. 2002;87(6):2984–2987. doi: 10.1210/jcem.87.6.8738. [DOI] [PubMed] [Google Scholar]
  • 11.Higgins SC, Gueorguiev M, Korbonits M. Ghrelin, the peripheral hunger hormone. Annals of Medicine. 2007;39(2):116–136. doi: 10.1080/07853890601149179. [DOI] [PubMed] [Google Scholar]
  • 12.Ukkola O, Pöykkö SM, Kesäniemi YA. Low plasma ghrelin concentration is an indicator of the metabolic syndrome. Journal of Clinical Endocrinology & Metabolism. 2005;90:6448–6453. [Google Scholar]
  • 13.Langenberg C, Bergstrom J, Laughlin GA, Barrett-Connor E. Ghrelin and the metabolic syndrome in older adults. Journal of Clinical Endocrinology and Metabolism. 2005;90(12):6448–6453. doi: 10.1210/jc.2005-1358. [DOI] [PubMed] [Google Scholar]
  • 14.McLaughlin T, Abbasi F, Lamendola C, Frayo RS, Cummings DE. Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive contrls. Journal of Clinical Endocrinology and Metabolism. 2004;89(4):1630–1635. doi: 10.1210/jc.2003-031572. [DOI] [PubMed] [Google Scholar]
  • 15.St-Pierre DH, Karelis AD, Coderre L, et al. Association of acylated and nonacylated ghrelin with insulin sensitivity in overweight and obese postmenopausal women. Journal of Clinical Endocrinology and Metabolism. 2007;92(1):264–269. doi: 10.1210/jc.2006-1603. [DOI] [PubMed] [Google Scholar]
  • 16.Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. Journal of Clinical Endocrinology and Metabolism. 1999;84(1):165–169. doi: 10.1210/jcem.84.1.5393. [DOI] [PubMed] [Google Scholar]
  • 17.Franks S. Polycystic ovary syndrome. The New England Journal of Medicine. 1995;333:853–861. doi: 10.1056/NEJM199509283331307. [DOI] [PubMed] [Google Scholar]
  • 18.Pagotto U, Gambineri A, Vicennati V, Heiman ML, Tschop M, Pasquali R. Plasma ghrelin, obesity, and the polycystic ovary syndrome: correlation with insulin resistance and androgen levels. Journal of Clinical Endocrinology and Metabolism. 2002;87(12):5625–5629. doi: 10.1210/jc.2002-020776. [DOI] [PubMed] [Google Scholar]
  • 19.Schöfl C, Horn R, Schill T, Schlösser HW, Müller MJ, Brabant G. Circulating ghrelin levels in patients with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism. 2002;87(10):4607–4610. doi: 10.1210/jc.2002-020505. [DOI] [PubMed] [Google Scholar]
  • 20.Orio F, Jr., Lucidi P, Palomba S, et al. Circulating ghrelin concentrations in the polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism. 2003;88(2):942–945. doi: 10.1210/jc.2002-021451. [DOI] [PubMed] [Google Scholar]
  • 21.Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. The New England Journal of Medicine. 2002;346(21):1623–1630. doi: 10.1056/NEJMoa012908. [DOI] [PubMed] [Google Scholar]
  • 22.Santosa S, Demonty I, Lichtenstein AH, Cianflone K, Jones PJH. An investigation of hormone and lipid associations after weight loss in women. Journal of the American College of Nutrition. 2007;26(3):250–258. doi: 10.1080/07315724.2007.10719608. [DOI] [PubMed] [Google Scholar]
  • 23.Weigle DS, Cummings DE, Newby PD, et al. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. Journal of Clinical Endocrinology and Metabolism. 2003;88(4):1577–1586. doi: 10.1210/jc.2002-021262. [DOI] [PubMed] [Google Scholar]
  • 24.Reinehr T, de Sousa G, Roth CL. Obestatin and ghrelin levels in obese children and adolescents before and after reduction of overweight. Clinical Endocrinology. 2007;68(2):304–310. doi: 10.1111/j.1365-2265.2007.03042.x. [DOI] [PubMed] [Google Scholar]
  • 25.Garcia JM, Iyer D, Poston WSC, et al. Rise of plasma ghrelin with weight loss is not sustained during weight maintenance. Obesity. 2006;14(10):1716–1723. doi: 10.1038/oby.2006.197. [DOI] [PubMed] [Google Scholar]
  • 26.Lejeune MPGM, Hukshorn CJ, Saris WHM, Westerterp-Plantenga MS. Effects of very low calorie diet induced body weight loss with or without human pegylated recombinant leptin treatment on changes in ghrelin and adiponectin concentrations. Physiology and Behavior. 2007;91(2-3):274–280. doi: 10.1016/j.physbeh.2007.03.004. [DOI] [PubMed] [Google Scholar]
  • 27.Leidy HJ, Dougherty KA, Frye BR, Duke KM, Williams NI. Twenty-four-hour ghrelin is elevated after calorie restriction and exercise training in non-obese women. Obesity. 2007;15(2):446–455. doi: 10.1038/oby.2007.542. [DOI] [PubMed] [Google Scholar]
  • 28.Kim HJ, Lee S, Kim TW, et al. Effects of exercise-induced weight loss on acylated and unacylated ghrelin in overweight children. Clinical Endocrinology. 2008;68(3):416–422. doi: 10.1111/j.1365-2265.2007.03058.x. [DOI] [PubMed] [Google Scholar]
  • 29.Reinehr T, Roth CL, Alexy U, Kersting M, Kiess W, Andler W. Ghrelin levels before and after reduction of overweight due to a low-fat high-carbohydrate diet in obese children and adolescents. International Journal of Obesity. 2005;29(4):362–368. doi: 10.1038/sj.ijo.0802913. [DOI] [PubMed] [Google Scholar]
  • 30.Ravussin E, Tschöp M, Morales S, Bouchard C, Heiman ML. Plasma ghrelin concentration and energy balance: overfeeding and negative energy balance studies in twins. Journal of Clinical Endocrinology and Metabolism. 2001;86(9):4547–4551. doi: 10.1210/jcem.86.9.8003. [DOI] [PubMed] [Google Scholar]
  • 31.Saad MF, Bernaba B, Hwu C-M, et al. Insulin regulates plasma ghrelin concentration. Journal of Clinical Endocrinology and Metabolism. 2002;87(8):3997–4000. doi: 10.1210/jcem.87.8.8879. [DOI] [PubMed] [Google Scholar]
  • 32.Weickert MO, Loeffelholz CV, Arafat AM, et al. Euglycemic hyperinsulinemia differentially modulates circulating total and acylated-ghrelin in humans. Journal of Endocrinological Investigation. 2008;31(2):119–124. doi: 10.1007/BF03345577. [DOI] [PubMed] [Google Scholar]
  • 33.Broglio F, Gottero C, Prodam F, et al. Ghrelin secretion is inhibited by glucose load and insulin-induced hypoglycaemia but unaffected by glucagon and arginine in humans. Clinical Endocrinology. 2004;61(4):503–509. doi: 10.1111/j.1365-2265.2004.02121.x. [DOI] [PubMed] [Google Scholar]
  • 34.Murdolo G, Lucidi P, Di Loreto C, et al. Insulin is required for prandial ghrelin suppression in humans. Diabetes. 2003;52(12):2923–2927. doi: 10.2337/diabetes.52.12.2923. [DOI] [PubMed] [Google Scholar]
  • 35.Broglio F, Benso A, Gottero C, et al. Effects of glucose, free fatty acids or arginine load on the GH-releasing activity of ghrelin in humans. Clinical Endocrinology. 2002;57(2):265–271. doi: 10.1046/j.1365-2265.2002.01595.x. [DOI] [PubMed] [Google Scholar]
  • 36.Briatore L, Andraghetti G, Cordera R. Acute plasma glucose increase, but not early insulin response, regulates plasma ghrelin. European Journal of Endocrinology. 2003;149(5):403–406. doi: 10.1530/eje.0.1490403. [DOI] [PubMed] [Google Scholar]
  • 37.Flanagan DE, Evans ML, Monsod TP, et al. The influence of insulin on circulating ghrelin. American Journal of Physiology. 2003;284(2):E313–E316. doi: 10.1152/ajpendo.00569.2001. [DOI] [PubMed] [Google Scholar]
  • 38.Liu J, Prudom CE, Nass R, et al. Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. Journal of Clinical Endocrinology and Metabolism. 2008;93(5):1980–1987. doi: 10.1210/jc.2007-2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Schaller G, Schmidt A, Pleiner J, et al. Plasma ghrelin concentrations are not regulated by glucose or insulin: a doubleblind, placebo controlled crossover clamp study. Diabetes. 2003;52, article 1620 doi: 10.2337/diabetes.52.1.16. [DOI] [PubMed] [Google Scholar]
  • 40. Broglio, 2001.
  • 41.Greenman Y, Golani N, Gilad S, Yaron M, Limor R, Stern N. Ghrelin secretion is modulated in a nutrient- and gender-specific manner. Clinical Endocrinology. 2004;60(3):382–388. doi: 10.1111/j.1365-2265.2004.01993.x. [DOI] [PubMed] [Google Scholar]
  • 42.Kiewiet RM, van Aken MO, van der Weerd K, et al. Effects of acute administration of acylated and unacylated ghrelin on glucose and insulin concentrations in morbidly obese subjects without overt diabetes. European Journal of Endocrinology. 2009;161(4):567–573. doi: 10.1530/EJE-09-0339. [DOI] [PubMed] [Google Scholar]
  • 43.Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–198. doi: 10.1038/35051587. [DOI] [PubMed] [Google Scholar]
  • 44.Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural gh secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. Journal of Clinical Endocrinology and Metabolism. 2001;86(10):5083–5086. doi: 10.1210/jcem.86.10.8098. [DOI] [PubMed] [Google Scholar]
  • 45.Broglio F, Gottero C, Benso A, et al. Effects of ghrelin on the insulin and glycemic responses to glucose, arginine, or free fatty acids load in humans. Journal of Clinical Endocrinology and Metabolism. 2003;88(9):4268–4272. doi: 10.1210/jc.2002-021940. [DOI] [PubMed] [Google Scholar]
  • 46.Arosio M, Ronchi CL, Gebbia C, Cappiello V, Beck-Peccoz P, Peracchi M. Stimulatory effects of ghrelin on circulating somatostatin and pancreatic polypeptide levels. Journal of Clinical Endocrinology and Metabolism. 2003;88(2):701–704. doi: 10.1210/jc.2002-021161. [DOI] [PubMed] [Google Scholar]
  • 47.Broglio F, Prodam F, Riganti F, et al. The continuous infusion of acylated ghrelin enhances growth hormone secretion and worsens glucose metabolism in humans. Journal of Endocrinological Investigation. 2008;31(9):788–794. doi: 10.1007/BF03349259. [DOI] [PubMed] [Google Scholar]
  • 48.Gauna C, Meyler FM, Janssen JA, et al. Administration of acylated ghrelin reduces insulin sensitivity, whereas the combination of acylated plus unacylated ghrelin strongly improves insulin sensitivity. Journal of Clinical Endocrinology and Metabolism. 2004;89(10):5035–5042. doi: 10.1210/jc.2004-0363. [DOI] [PubMed] [Google Scholar]
  • 49.Gauna C, Delhanty PJD, Hofland LJ, et al. Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes. Journal of Clinical Endocrinology and Metabolism. 2005;90(2):1055–1060. doi: 10.1210/jc.2004-1069. [DOI] [PubMed] [Google Scholar]
  • 50.Pöykkö SM, Kellokoski E, Hörkkö S, Kauma H, Kesäniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes. 2003;52(10):2546–2553. doi: 10.2337/diabetes.52.10.2546. [DOI] [PubMed] [Google Scholar]
  • 51.Broglio F, Gottero C, Prodam F, et al. Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. Journal of Clinical Endocrinology and Metabolism. 2004;89(6):3062–3065. doi: 10.1210/jc.2003-031964. [DOI] [PubMed] [Google Scholar]
  • 52.Granata R, Settanni F, Biancone L, et al. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic betacells and human islets: involvement of 3′, 5′ cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-kinase/Akt signaling. Endocrinology. 2007;148(2):512–529. doi: 10.1210/en.2006-0266. [DOI] [PubMed] [Google Scholar]
  • 53.Gauna C, Delhanty PJ, van Aken MO, et al. Unacylated ghrelin is active on the INS-1E rat insulinoma cell line independently of the growth hormone secretagogue receptor type 1a and the corticotropin releasing factor 2 receptor. Molecular and Cellular Endocrinology. 2006;251:103–111. doi: 10.1016/j.mce.2006.03.040. [DOI] [PubMed] [Google Scholar]
  • 54.Murata M, Okimura Y, Iida K, et al. Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. Journal of Biological Chemistry. 2002;277(7):5667–5674. doi: 10.1074/jbc.M103898200. [DOI] [PubMed] [Google Scholar]
  • 55.Andralojc KM, Mercalli A, Nowak KW, et al. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia. 2009;52(3):486–493. doi: 10.1007/s00125-008-1238-y. [DOI] [PubMed] [Google Scholar]
  • 56.Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L. Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(9):2924–2929. doi: 10.1073/pnas.0308604100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Heller RS, Jenny M, Collombat P, et al. Genetic determinants of pancreatic epsilon-cell development. Developmental Biology. 2005;286(1):217–224. doi: 10.1016/j.ydbio.2005.06.041. [DOI] [PubMed] [Google Scholar]
  • 58.Salehi A, De La Cour CD, Håkanson R, Lundquist I. Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regulatory Peptides. 2004;118(3):143–150. doi: 10.1016/j.regpep.2003.12.001. [DOI] [PubMed] [Google Scholar]
  • 59.Qader SS, Håkanson R, Rehfeld JF, Lundquist I, Salehi A. Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas. Regulatory Peptides. 2008;146(1–3):230–237. doi: 10.1016/j.regpep.2007.09.017. [DOI] [PubMed] [Google Scholar]
  • 60.Granata R, Settanni F, Trovato L, et al. Unacylated as well as acylated ghrelin promotes cell survival and inhibit apoptosis in HITT15 pancreatic beta cells. Journal of Endocrinological Investigation. 2006;29, article RC1922 doi: 10.1007/BF03347367. [DOI] [PubMed] [Google Scholar]
  • 61.Yada T, Dezaki K, Sone H, et al. Ghrelin regulates insulin release and glycemia: physiological role and therapeutic potential. Current Diabetes Reviews. 2008;4(1):18–23. doi: 10.2174/157339908783502352. [DOI] [PubMed] [Google Scholar]
  • 62.Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Molecular Medicine. 2008;14(11-12):741–751. doi: 10.2119/2008-00058.Rabe. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–913. doi: 10.1038/35038090. [DOI] [PubMed] [Google Scholar]
  • 64.Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. International Journal of Obesity. 2009;33(5):541–552. doi: 10.1038/ijo.2009.40. [DOI] [PubMed] [Google Scholar]
  • 65.Kim MS, Yoon CY, Jang PG, et al. The mitogenic and antiapoptotic actions of ghrelin in 3T3L1 adipocytes. Molecular Endocrinology. 2004;18:2291–2301. doi: 10.1210/me.2003-0459. [DOI] [PubMed] [Google Scholar]
  • 66.Kola B, Grossman A, Korbonits M. The role of AMP-activated protein kinase in obesity. Frontiers of Hormone Research. 2008;36:198–211. doi: 10.1159/000115366. [DOI] [PubMed] [Google Scholar]
  • 67.Muccioli G, Pons N, Ghe C, Catapano F, Granata R, Ghigo E. Ghrelin and desacyl ghrelin both inhibit isoproterenolinduced lipolysis in rat adipocytes via a nontype 1a growth hormone secretagogue receptor. European Journal of Pharmacology. 2004;498:27–35. doi: 10.1016/j.ejphar.2004.07.066. [DOI] [PubMed] [Google Scholar]
  • 68.Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regulatory Peptides. 2005;130(1-2):97–103. doi: 10.1016/j.regpep.2005.04.004. [DOI] [PubMed] [Google Scholar]
  • 69.Thompson NM, Gill DA, Davies R, et al. Ghrelin and desoctanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology. 2004;145:234–242. doi: 10.1210/en.2003-0899. [DOI] [PubMed] [Google Scholar]
  • 70.Mano-Otagiri A, Ohata H, Iwasaki-Sekino A, Nemoto T, Shibasaki T. Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. Journal of Endocrinology. 2009;201(3):341–349. doi: 10.1677/JOE-08-0374. [DOI] [PubMed] [Google Scholar]
  • 71.Choi K, Roh S-G, Hong Y-H, et al. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology. 2003;144(3):754–759. doi: 10.1210/en.2002-220783. [DOI] [PubMed] [Google Scholar]
  • 72.Ukkola O, Ravussin E, Jacobson P, et al. Mutations in the preproghrelin/ghrelin gene associated with obesity in humans. Journal of Clinical Endocrinology and Metabolism. 2001;86(8):3996–3999. doi: 10.1210/jcem.86.8.7914. [DOI] [PubMed] [Google Scholar]
  • 73.Ukkola O, Ravussin E, Jacobson P, et al. Role of Ghrelin polymorphisms in obesity based on three different studies. Obesity Research. 2002;10(8):782–791. doi: 10.1038/oby.2002.106. [DOI] [PubMed] [Google Scholar]
  • 74.Korbonits M, Gueorguiev M, O’Grady E, et al. A variation in the ghrelin gene increases weight and decreases insulin secretion in tall, obese children. Journal of Clinical Endocrinology and Metabolism. 2002;87(8):4005–4008. doi: 10.1210/jcem.87.8.8881. [DOI] [PubMed] [Google Scholar]
  • 75.Hinney A, Hoch A, Geller F, et al. Ghrelin gene: identification of missense variants and a frameshift mutation in extremely obese children and adolescents and healthy normal weight students. Journal of Clinical Endocrinology and Metabolism. 2002;87(6):2716–2719. doi: 10.1210/jcem.87.6.8672. [DOI] [PubMed] [Google Scholar]
  • 76.Ukkola O, Kesäniemi YA. Preproghrelin Leu72Met polymorphism in patients with type 2 diabetes mellitus. Journal of Internal Medicine. 2003;254(4):391–394. doi: 10.1046/j.1365-2796.2003.01208.x. [DOI] [PubMed] [Google Scholar]
  • 77.Pöykkö S, Ukkola O, Kauma H, Savolainen MJ, Kesäniemi YA. Ghrelin Arg51Gln mutation is a risk factor for type 2 diabetes and hypertension in a random sample of middle-aged subjects. Diabetologia. 2003;46(4):455–458. doi: 10.1007/s00125-003-1058-z. [DOI] [PubMed] [Google Scholar]
  • 78.Skibola DR, Smith MT, Bracci PM, et al. Polymorphisms in ghrelin and neuropeptide Y genes are associated with non-Hodgkin lymphoma. Cancer Epidemiology Biomarkers and Prevention. 2005;14(5):1251–1256. doi: 10.1158/1055-9965.EPI-04-0895. [DOI] [PubMed] [Google Scholar]
  • 79.Steinle NI, Pollin TI, O’Connell JR, Mitchell BD, Shuldiner AR. Variants in the ghrelin gene are associated with metabolic syndrome in the Old Order Amish. Journal of Clinical Endocrinology and Metabolism. 2005;90(12):6672–6677. doi: 10.1210/jc.2005-0549. [DOI] [PubMed] [Google Scholar]
  • 80.Yoon SJ, Pae CU, Lee H, et al. Ghrelin precursor gene polymorphism and methamphetamine dependence in the Korean population. Neurosci Res. 2005;53(4):391–395. doi: 10.1016/j.neures.2005.08.013. [DOI] [PubMed] [Google Scholar]
  • 81.Jo D-S, Kim S-L, Kim S-Y, Hwang PH, Lee K-H, Lee D-Y. Preproghrelin Leu72Met polymorphism in obese Korean children. Journal of Pediatric Endocrinology and Metabolism. 2005;18(11):1083–1086. doi: 10.1515/jpem.2005.18.11.1083. [DOI] [PubMed] [Google Scholar]
  • 82.Choi HJ, Cho YM, Moon MK, et al. Polymorphisms in the ghrelin gene are associated with serum high-density lipoprotein cholesterol level and not with type 2 diabetes mellitus in Koreans. Journal of Clinical Endocrinology and Metabolism. 2006;91:4657–4563. doi: 10.1210/jc.2005-2549. [DOI] [PubMed] [Google Scholar]
  • 83.Zavarella S, Petrone A, Zampetti S, et al. A new variation in the promoter region, the 604 > T, and the Leu72Met polymorphism of the ghrelin gene are associated with protection to insulin resistance. International Journal of Obesity. 2008;32(4):663–668. doi: 10.1038/sj.ijo.0803766. [DOI] [PubMed] [Google Scholar]
  • 84.Lee D-Y, Kim S-Y, Jo D-S, et al. Preproghrelin Leu72Met polymorphism predicts a lower rate of developing renal dysfunction in type 2 diabetic nephropathy. European Journal of Endocrinology. 2006;155(1):187–190. doi: 10.1530/eje.1.02171. [DOI] [PubMed] [Google Scholar]
  • 85.Vartiainen J, Kesäniemi YA, Ukkola O. Sequencing analysis of ghrelin gene 5′ flanking region: relations between the sequence variants, fasting plasma total ghrelin concentrations, and body mass index. Metabolism. 2006;55(10):1420–1425. doi: 10.1016/j.metabol.2006.06.014. [DOI] [PubMed] [Google Scholar]
  • 86.Sørensen TI, Boutin P, Taylor MA. Genetic polymorphisms and weight loss in obesity: a randomised trial of hypo-energetic high-versus low-fat diets. PLoS Clinical Trials. 2006;1(2, article e12) doi: 10.1371/journal.pctr.0010012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Kuzuya M, Ando F, Iguchi A, Shimokata H. Preproghrelin Leu72Met variant contributes to overweight in middleaged men of a Japanese large cohort. International Journal of Obesity. 2006;30:1609–1614. doi: 10.1038/sj.ijo.0803296. [DOI] [PubMed] [Google Scholar]
  • 88.Tang N-P, Wang L-S, Yang L, et al. Preproghrelin Leu72Met polymorphism in Chinese subjects with coronary artery disease and controls. Clinica Chimica Acta. 2008;387(1-2):42–47. doi: 10.1016/j.cca.2007.08.014. [DOI] [PubMed] [Google Scholar]
  • 89.Ando T, Ichimaru Y, Konjiki F, Shoji M, Komaki G. Variations in the preproghrelin gene correlate with higher body mass index, fat mass, and body dissatisfaction in young Japanese women. American Journal of Clinical Nutrition. 2007;86(1):25–32. doi: 10.1093/ajcn/86.1.25. [DOI] [PubMed] [Google Scholar]
  • 90.Hubacek JA, Bloudícková S, Bohuslavová R, et al. Ghrelin variants influence development of body mass index and plasma levels of total cholesterol in dialyzed patients. Clinical Chemistry and Laboratory Medicine. 2007;45(9):1121–1123. doi: 10.1515/CCLM.2007.141. [DOI] [PubMed] [Google Scholar]
  • 91.Mager U, Lindi V, Lindström J, et al. Association of the Leu72Met polymorphism of the ghrelin gene with the risk of type 2 diabetes in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study. Diabetic Medicine. 2006;23(6):685–689. doi: 10.1111/j.1464-5491.2006.01870.x. [DOI] [PubMed] [Google Scholar]
  • 92.Mager U, Kolehmainen M, Lindström J, et al. Association between ghrelin gene variations and blood pressure in subjects with impaired glucose tolerance. American Journal of Hypertension. 2006;19(9):920–926. doi: 10.1016/j.amjhyper.2006.02.017. [DOI] [PubMed] [Google Scholar]
  • 93.Zhang W, Zhao L, Lin TR, et al. Inhibition of adipogenesis by ghrelin. Molecular Biology of the Cell. 2004;15(5):2484–2491. doi: 10.1091/mbc.E03-09-0657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Ott V, Fasshauer M, Dalski A, et al. Direct peripheral effects of ghrelin include suppression of adiponectin expression. Hormone and Metabolic Research. 2002;34(11-12):640–645. doi: 10.1055/s-2002-38261. [DOI] [PubMed] [Google Scholar]
  • 95.Giovambattista A, Piermaria J, Suescun MO, Calandra RS, Gaillard RC, Spinedi E. Direct effect of ghrelin on leptin production by cultured rat white adipocytes. Obesity. 2006;14(1):19–27. doi: 10.1038/oby.2006.4. [DOI] [PubMed] [Google Scholar]
  • 96.Dixit VD, Taub DD. Ghrelin and immunity: a young player in an old field. Experimental Gerontology. 2005;40(11):900–910. doi: 10.1016/j.exger.2005.09.003. [DOI] [PubMed] [Google Scholar]
  • 97.Dixit VD, Schaffer EM, Pyle RS, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. Journal of Clinical Investigation. 2004;114(1):57–66. doi: 10.1172/JCI21134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Papotti M, Ghe C, Cassoni P, et al. Growth hormone secretagogue binding sites in peripheral human tissues. Journal of Clinical Endocrinology and Metabolism. 2000;85(10):3803–3807. doi: 10.1210/jcem.85.10.6846. [DOI] [PubMed] [Google Scholar]
  • 99.Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation. 2005;112(19):2986–2992. doi: 10.1161/CIRCULATIONAHA.105.553883. [DOI] [PubMed] [Google Scholar]
  • 100.Tesauro M, Schinzari F, Rovella V, et al. Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome. Hypertension. 2009;54(5):995–1000. doi: 10.1161/HYPERTENSIONAHA.109.137729. [DOI] [PubMed] [Google Scholar]
  • 101.Cao J-M, Ong H, Chen C. Effects of ghrelin and synthetic GH secretagogues on the cardiovascular system. Trends in Endocrinology and Metabolism. 2006;17(1):13–18. doi: 10.1016/j.tem.2005.11.004. [DOI] [PubMed] [Google Scholar]
  • 102.Okumura H, Nagaya N, Enomoto M, Nakagawa E, Oya H, Kangawa K. Vasodilatory effect of ghrelin, an endogenous peptide from the stomach. Journal of Cardiovascular Pharmacology. 2002;39(6):779–783. doi: 10.1097/00005344-200206000-00001. [DOI] [PubMed] [Google Scholar]
  • 103.Nagaya N, Kangawa K. Therapeutic potential of ghrelin in the treatment of heart failure. Drugs. 2006;66(4):439–448. doi: 10.2165/00003495-200666040-00004. [DOI] [PubMed] [Google Scholar]
  • 104.Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001;104(12):1430–1435. doi: 10.1161/hc3601.095575. [DOI] [PubMed] [Google Scholar]
  • 105.Pöykkö SM, Kellokoski E, Ukkola O, et al. Plasma ghrelin concentrations are positively associated with carotid artery atherosclerosis in males. Journal of Internal Medicine. 2006;260(1):43–52. doi: 10.1111/j.1365-2796.2006.01661.x. [DOI] [PubMed] [Google Scholar]
  • 106.Fernandez A, Kaczmarek I, Schmoeckel M, Beiras A, Vicol C, Reichart B. Expression of Ghrelin, a novel cardiovascular hormone, and its peptide in the myocardium of patients undergoing heart transplantation. The Journal of Heart and Lung Transplantation. 2007;2(1, supplement 1):S84–S85. [Google Scholar]
  • 107.Xu X, Jhun BS, Ha CH, Jin ZG. Molecular mechanisms of ghrelin-mediated endothelial nitric oxide synthase activation Endocrinology. Endocrinology. 2008;149:4183–4192. doi: 10.1210/en.2008-0255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Togliatto G, Trombetta A, Dentelli P. Unacylated ghrelin rescues endothelial progenitor cell function in individuals with type 2 diabetes. Diabetes. 2010;59(4):1016–1025. doi: 10.2337/db09-0858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Tesauro M, Schinzari F, Rovella V, et al. Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome. Hypertension. 2009;54(5):995–1000. doi: 10.1161/HYPERTENSIONAHA.109.137729. [DOI] [PubMed] [Google Scholar]
  • 110.Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132(3):387–396. doi: 10.1016/j.cell.2008.01.017. [DOI] [PubMed] [Google Scholar]
  • 111.Gutierrez JA, Solenberg PJ, Perkins DR, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(17):6320–6325. doi: 10.1073/pnas.0800708105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Sakata I, Yang J, Lee CE, et al. Colocalization of ghrelin O-acyltransferase and ghrelin in gastric mucosal cells. American Journal of Physiology. 2009;297(1):E134–E141. doi: 10.1152/ajpendo.90859.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Kirchner H, Gutierrez JA, Solenberg PJ, et al. GOAT links dietary lipids with the endocrine control of energy balance. Nature Medicine. 2009;15(7):741–745. doi: 10.1038/nm.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Kirchner H, Gutierrez JA, Solenberg PJ, et al. Erratum: GOAT links dietary lipids with the endocrine control of energy balance (Nature Medicine (2009) 15 (741–745)) Nature Medicine. 2009;15(9):p. 1093. doi: 10.1038/nm.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Moulin A, Demange L, Bergé G, et al. Toward potent ghrelin receptor ligands based on trisubstituted 1,2,4-triazole structure. 2. Synthesis and pharmacological in vitro and in vivo evaluations. Journal of Medicinal Chemistry. 2007;50(23):5790–5806. doi: 10.1021/jm0704550. [DOI] [PubMed] [Google Scholar]
  • 116.Gualillo O, Lago F, Dieguez C. Introducing GOAT: a target for obesity and anti-diabetic drugs? Trends in Pharmacological Sciences. 2008;29(8):398–401. doi: 10.1016/j.tips.2008.06.003. [DOI] [PubMed] [Google Scholar]
  • 117.Schellekens H, Dinan TG, Cryan JF. Lean mean fat reducing “ghrelin” machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology. 2010;58(1):2–16. doi: 10.1016/j.neuropharm.2009.06.024. [DOI] [PubMed] [Google Scholar]
  • 118.Esler WP, Rudolph J, Claus TH, et al. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology. 2007;148(11):5175–5185. doi: 10.1210/en.2007-0239. [DOI] [PubMed] [Google Scholar]
  • 119.Lu S-C, Xu J, Chinookoswong N, et al. An acyl-ghrelin-specific neutralizing antibody inhibits the acute ghrelin-mediated orexigenic effects in mice. Molecular Pharmacology. 2009;75(4):901–907. doi: 10.1124/mol.108.052852. [DOI] [PubMed] [Google Scholar]
  • 120.Zorrilla EP, Iwasaki S, Moss JA, et al. Vaccination against weight gain. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(35):13226–13231. doi: 10.1073/pnas.0605376103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Shearman LP, Wang S-P, Helmling S, et al. Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice. Endocrinology. 2006;147(3):1517–1526. doi: 10.1210/en.2005-0993. [DOI] [PubMed] [Google Scholar]
  • 122.Becskei C, Bilik KU, Klussmann S, Jarosch F, Lutz TA, Riediger T. The anti-ghrelin spiegelmer NOX-B11-3 blocks ghrelin- but not fasting-induced neuronal activation in the hypothalamic arcuate nucleus. Journal of Neuroendocrinology. 2008;20(1):85–92. doi: 10.1111/j.1365-2826.2007.01619.x. [DOI] [PubMed] [Google Scholar]
  • 123.Wu X, Cooper RS, Boerwinkle E, et al. Combined analysis of genomewide scans for adult height: results from the NHLBI family blood pressure program. European Journal of Human Genetics. 2003;11(3):271–274. doi: 10.1038/sj.ejhg.5200952. [DOI] [PubMed] [Google Scholar]
  • 124.Kissebah AH, Sonnenberg GE, Myklebust J, et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(26):14478–14483. doi: 10.1073/pnas.97.26.14478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Miraglia del Giudice E, Santoro N, Cirillo G, et al. Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity. International Journal of Obesity. 2004;28(3):447–450. doi: 10.1038/sj.ijo.0802572. [DOI] [PubMed] [Google Scholar]
  • 126.Bing C, Ambye L, Fenger M, et al. Large-scale studies of the Leu72Met polymorphism of the ghrelin gene in relation to the metabolic syndrome and associated quantitative traits. Diabetic Medicine. 2005;22(9):1157–1160. doi: 10.1111/j.1464-5491.2005.01575.x. [DOI] [PubMed] [Google Scholar]
  • 127.Larsen LH, Gjesing AP, Sørensen TIA, et al. Mutation analysis of the preproghrelin gene: no association with obesity and type 2 diabetes. Clinical Biochemistry. 2005;38(5):420–424. doi: 10.1016/j.clinbiochem.2005.01.008. [DOI] [PubMed] [Google Scholar]
  • 128.Vartiainen J, Pöykkö SM, Räisänen T, Kesäniemi YA, Ukkola O. Sequencing analysis of the ghrelin receptor (growth hormone secretagogue receptor type 1a) gene. European Journal of Endocrinology. 2004;150(4):457–463. doi: 10.1530/eje.0.1500457. [DOI] [PubMed] [Google Scholar]
  • 129.Mager U, Degenhardt T, Pulkkinen L, et al. Variations in the ghrelin receptor gene associate with obesity and glucose metabolism in individuals with impaired glucose tolerance. PLoS One. 2008;3(8, article e2941) doi: 10.1371/journal.pone.0002941. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from International Journal of Peptides are provided here courtesy of Wiley

RESOURCES