Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1976 May;31(5):743–745. doi: 10.1128/aem.31.5.743-745.1976

Enzymatic conversion of sterigmatocystin into aflatoxin B1 by cell-free extracts of Aspergillus parasiticus.

R Singh, D P Hsieh
PMCID: PMC291187  PMID: 5954

Abstract

A cell-free extract, prepared from Aspergillus parasiticus ATCC 15517 grown in synthetic medium, was active in converting [14C]sterigmatocystin into aflatoxin B1 in the presence of reduced nicotinamide adenine dinucleotide phosphate. The activity was demonstrated by the time course of conversion and the linear dependence of the yield of product on enzyme concentrations. Optimum activity was obtained at pH 7.5 to 7.8 at 27 C. The results confirm sterigmatocystin as a biogenetic precursor of aflatoxin B1. Techniques were developed for enzymatic studies on aflatoxin biosynthesis.

Full text

PDF
743

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADYE J., MATELES R. I. INCORPORATION OF LABELLED COMPOUNDS INTO AFLATOXINS. Biochim Biophys Acta. 1964 May 11;86:418–420. doi: 10.1016/0304-4165(64)90077-7. [DOI] [PubMed] [Google Scholar]
  2. Biollaz M., Büchi G., Milne G. The biosynthesis of the aflatoxins. J Am Chem Soc. 1970 Feb 25;92(4):1035–1043. doi: 10.1021/ja00707a050. [DOI] [PubMed] [Google Scholar]
  3. Dimroth P., Walter H., Lynen F. Biosynthese von 6-Methylsalicylsäure. Eur J Biochem. 1970 Mar 1;13(1):98–110. doi: 10.1111/j.1432-1033.1970.tb00904.x. [DOI] [PubMed] [Google Scholar]
  4. Hsieh D. P., Lin M. T., Yao R. C. Conversion of sterigmatocystin to aflatoxin B 1 by Aspergillus parasiticus. Biochem Biophys Res Commun. 1973 Jun 8;52(3):992–997. doi: 10.1016/0006-291x(73)91035-8. [DOI] [PubMed] [Google Scholar]
  5. Hsieh D. P., Mateles R. I. The relative contribution of acetate and glucose to aflatoxin biosynthesis. Biochim Biophys Acta. 1970 Jun;208(3):482–486. doi: 10.1016/0304-4165(70)90222-9. [DOI] [PubMed] [Google Scholar]
  6. Murphy G., Vogel G., Krippahl G., Lynen F. Patulin biosynthesis: the role of mixed-function oxidases in the hydroxylation of m-cresol. Eur J Biochem. 1974 Nov 15;49(2):443–455. doi: 10.1111/j.1432-1033.1974.tb03849.x. [DOI] [PubMed] [Google Scholar]
  7. Raj H. G., Viswanathan L., Murthy H. S., Venkitasubramanian T. A. Biosynthesis of aflatoxins by cell-free preparations from Aspergillus flavus. Experientia. 1969 Nov 15;25(11):1141–1142. doi: 10.1007/BF01900235. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES