Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1978 Aug;36(2):213–216. doi: 10.1128/aem.36.2.213-216.1978

Progesterone biotransformation by plant cell suspension cultures.

B Yagen, G E Gallili, R I Mateles
PMCID: PMC291203  PMID: 697360

Abstract

Progesterone was converted to 5alpha-pregnane-3alpha-ol-20-one, delta4-pregnene-20alpha-ol-3-one, delta4-pregnene-14alpha-ol-3,20-dione, delta4-pregnene-7beta,14alpha-diol-3,20-dione, and delta4-pregnene-6beta,11alpha-diol-3,20-dione by cell cultures of Lycopersicon esculentum. Cell cultures of Capsicum frutescens (green) metabolized progesterone to delta4-pregnene-20alpha-ol-3-one in very high yield, and Vinca rosea yielded delta4-pregnene-20beta-ol-3-one and delta4-pregnene-14alpha-ol-3,20-dione. A stereospecific reduction of the keto groups and a double bond and stereospecific introduction of hydroxyl groups at the 6, 11, and 14 positions have been observed. The mono- and dihydroxylated progesterones have not previously been reported as metabolic products of progesterone by plant cell systems and represent de novo hydroxylation of a nonglycosylated steroid.

Full text

PDF
213

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behrend J., Mateles R. I. Nitrogen metabolism in plant cell suspension cultures: I. Effect of amino acids on growth. Plant Physiol. 1975 Nov;56(5):584–589. doi: 10.1104/pp.56.5.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHANG V. M., IDLER D. R. alpha-Reduction of the 20-carbonyl group in C-21 steroids by Rhodotorula longissima. Can J Biochem Physiol. 1961 Aug;39:1277–1285. doi: 10.1139/o61-134. [DOI] [PubMed] [Google Scholar]
  3. DULANEY E. L., MCALEER W. J., KOSLOWSKI M., STAPLEY E. O., JAGLOM J. Hydroxylation of progesterone and 11-desoxy-17-hydroxycorticosterone by Aspergillus and Penicillium. Appl Microbiol. 1955 Nov;3(6):336–340. doi: 10.1128/am.3.6.336-340.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Furuya T., Hirotani M., Shinohara T. Biotransformation of digitoxin by suspension callus culture of Digitalis purpurea. Chem Pharm Bull (Tokyo) 1970 May;18(5):1080–1082. doi: 10.1248/cpb.18.1080. [DOI] [PubMed] [Google Scholar]
  5. Graves J. M., Smith W. K. Transformation of pregnenolone and progesterone by cultured plant cells. Nature. 1967 Jun 17;214(5094):1248–1249. doi: 10.1038/2141248a0. [DOI] [PubMed] [Google Scholar]
  6. SCHUBERT A., HELLER K., ONKEN D., ZETSCHE K., KLUEGER B. [Microbial hydroxylation of progesterone in positions 6 and 14]. Z Naturforsch B. 1960 Apr;15B:269–269. [PubMed] [Google Scholar]
  7. Stohs S. J., Rosenberg H. Steroids and steroid metabolism in plant tissue cultures. Lloydia. 1975 May-Jun;38(3):181–194. [PubMed] [Google Scholar]
  8. Weinstein Y., Lindner H. R., Eckstein B. Thymus metabolises progesterone- possible enzymatic marker for T lymphocytes. Nature. 1977 Apr 14;266(5603):632–633. doi: 10.1038/266632a0. [DOI] [PubMed] [Google Scholar]
  9. ZETSCHE K. [Chemical-physiological studies on hydroxylation of steroids by fungi of the genus Curvularia]. Arch Mikrobiol. 1961;38:237–271. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES