Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1978 Aug;36(2):386–388. doi: 10.1128/aem.36.2.386-388.1978

Establishment of a heat inactivation curve for Clostridium botulinum 62A toxin in beef broth.

M E Losikoff
PMCID: PMC291232  PMID: 29566

Abstract

A procedure is described for establishing a heat inactivation curve for the toxin of Clostridium botulinum 62A in beef broth. The effect of toxin titer, pH, and the type of acid employed for pH adjustment on the heat stability of the toxin is described.

Full text

PDF
386

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson K., Gullmar B., Molin N. The effect of temperature on toxin formation and toxin stability of Clostridium botulinum type E in different environments. Can J Microbiol. 1966 Apr;12(2):385–394. doi: 10.1139/m66-052. [DOI] [PubMed] [Google Scholar]
  2. CARTWRIGHT T. E., LAUFFER M. A. Temperature effects on botulinum A toxin. Proc Soc Exp Biol Med. 1958 Jun;98(2):327–330. doi: 10.3181/00379727-98-24033. [DOI] [PubMed] [Google Scholar]
  3. Licciardello J. J., Nickerson J. T., Ribich C. A., Goldblith S. A. Thermal inactivation of type E botulinum toxin. Appl Microbiol. 1967 Mar;15(2):249–256. doi: 10.1128/am.15.2.249-256.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Schantz E. J., Sugiyama H. Toxic proteins produced by Clostridium botulinum. J Agric Food Chem. 1974 Jan-Feb;22(1):26–30. doi: 10.1021/jf60191a033. [DOI] [PubMed] [Google Scholar]
  5. Yao M. G., Denny C. B., Bohrer C. W. Effect of frozen storage time on heat inactivation of Clostridium botulinum type E toxin. Appl Microbiol. 1973 Mar;25(3):503–505. doi: 10.1128/am.25.3.503-505.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES