Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1979 Dec;38(6):1086–1091. doi: 10.1128/aem.38.6.1086-1091.1979

Occurrence and Characterization of a Phosphoenolpyruvate: Glucose Phosphotransferase System in a Marine Bacterium, Serratia marinorubra

Robert E Hodson 1, Farooq Azam 2
PMCID: PMC291250  PMID: 16345474

Abstract

The mechanism of d-glucose transport in the marine bacterium Serratia marinorubra was investigated. Uptake is mediated by a single, constitutive phosphoenolpyruvate:sugar phosphotransferase system (PTS), resulting in phosphorylation of d-glucose to d-glucose phosphate during transport. The system is saturable (Km = 6.4 × 10−6 M) and highly temperature dependent, with a Q10 of 3.5 between 5 and 15°C. The system is highly specific for d-glucose; structurally related sugars and sugar alcohols did not significantly compete with d-glucose for transport. The PTS requires Mg2+ (Km = 2.5 × 10−4 M), but its activity is otherwise unaffected by salinity changes over the range tested (0 to 35 ‰). S. marinorubra differs from other gram-negative organisms (Escherichia coli and Salmonella typhimurium) in that its glycerol (non-PTS substrate) permease is not regulated by the presence of glucose (PTS substrate).

Full text

PDF
1086

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews K. J., Lin E. C. Selective advantages of various bacterial carbohydrate transport mechanisms. Fed Proc. 1976 Aug;35(10):2185–2189. [PubMed] [Google Scholar]
  2. CARLUCCI A. F., PRAMER D. Factors influencing the plate method for determining abundance of bacteria in sea water. Proc Soc Exp Biol Med. 1957 Nov;96(2):392–394. doi: 10.3181/00379727-96-23487. [DOI] [PubMed] [Google Scholar]
  3. Cirillo V. P. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast. J Bacteriol. 1968 Feb;95(2):603–611. doi: 10.1128/jb.95.2.603-611.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drapeau G. R., Matula T. I., MacLeod R. A. Nutrition and metabolism of marine bacteria. XV. Relation of Na+-activated transport to the Na+ requirement of a marine pseudomonad for growth. J Bacteriol. 1966 Jul;92(1):63–71. doi: 10.1128/jb.92.1.63-71.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gachelin G. A new assay of the phosphotransferase system in Escherichia coli. Biochem Biophys Res Commun. 1969 Feb 21;34(4):382–387. doi: 10.1016/0006-291x(69)90392-1. [DOI] [PubMed] [Google Scholar]
  6. Gachelin G. Studies on the alpha-methylglucoside permease of Escherichia coli. A two-step mechanism for the accumulation of alpha-methylglucoside 6-phosphate. Eur J Biochem. 1970 Oct;16(2):342–357. doi: 10.1111/j.1432-1033.1970.tb01088.x. [DOI] [PubMed] [Google Scholar]
  7. Grimont P. A., Grimont F., De Rosnay H. L. Taxonomy of the genus Serratia. J Gen Microbiol. 1977 Jan;98(1):39–66. doi: 10.1099/00221287-98-1-39. [DOI] [PubMed] [Google Scholar]
  8. KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kundig W., Roseman S. Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli. J Biol Chem. 1971 Mar 10;246(5):1393–1406. [PubMed] [Google Scholar]
  10. Kundig W., Roseman S. Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem. 1971 Mar 10;246(5):1407–1418. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Reichelt J. L., Baumann P. Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch Microbiol. 1974 May 20;97(4):329–345. doi: 10.1007/BF00403071. [DOI] [PubMed] [Google Scholar]
  13. Saier M. H., Jr, Feucht B. U., Hofstadter L. J. Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. J Biol Chem. 1976 Feb 10;251(3):883–892. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES