Abstract
Pseudomonas aeruginosa strain KO3 and a mixed aerobic enrichment culture, isolated from sewage sludge lagoon water, were found to aerobically transform the chlorinated insecticide Kepone, yielding monohydro-Kepone. Identification of the product was confirmed by gas chromatography and electron impact mass spectrometry. The mixed culture and P. aeruginosa strain KO3 produced about 4 and 16%, respectively, dihydro-Kepone, determined by cochromatography using authentic standards. Reduced amounts of monohydro-Kepone, compared with the mixed and pure cultures, were produced by James River sediment microorganisms. Kepone was not utilized as a sole carbon or energy source by any of the bacteria or mixed cultures examined in this study.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alley E. G., Dollar D. A., Layton B. R., Minyard J. P., Jr Photochemistry of mirex. J Agric Food Chem. 1973 Jan-Feb;21(1):138–139. doi: 10.1021/jf60185a035. [DOI] [PubMed] [Google Scholar]
- Alley E. G., Layton B. R., Minyard J. P., Jr Identification of the photoproducts of the insecticides Mirex and Kepone. J Agric Food Chem. 1974 May-Jun;22(3):442–445. doi: 10.1021/jf60193a054. [DOI] [PubMed] [Google Scholar]
- Blanke R. V., Fariss M. W., Guzelian P. S., Paterson A. R., Smith D. E. Identification of a reduced form of chlordecone (Kepone) in human stool. Bull Environ Contam Toxicol. 1978 Dec;20(6):782–785. doi: 10.1007/BF01683600. [DOI] [PubMed] [Google Scholar]
- Borsetti A. P., Roach J. A. Identification of kepone alteration products in soil and mullet. Bull Environ Contam Toxicol. 1978 Aug;20(2):241–247. doi: 10.1007/BF01683515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carver R. A., Borsetti A. P., Kamps L. R. Gas-liquid chromatographic determination of kepone residues in finfish, shellfish, and crustaceans. J Assoc Off Anal Chem. 1978 Jul;61(4):877–883. [PubMed] [Google Scholar]
- Evans W. C. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature. 1977 Nov 3;270(5632):17–22. doi: 10.1038/270017a0. [DOI] [PubMed] [Google Scholar]
- Focht D. D., Alexander M. Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J Agric Food Chem. 1971 Jan-Feb;19(1):20–22. doi: 10.1021/jf60173a042. [DOI] [PubMed] [Google Scholar]
- Francis A. J., Spanggord R. J., Ouchi G. I. Degradation of lindane by Escherichia coli. Appl Microbiol. 1975 Apr;29(4):567–568. doi: 10.1128/am.29.4.567-568.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harless R. L., Harris D. E., Sovocool G. W., Zehr R. D., Wilson N. K., Oswald E. O. Mass spectrometric analyses and characterization of Kepone in environmental and human samples. Biomed Mass Spectrom. 1978 Mar;5(3):232–237. doi: 10.1002/bms.1200050312. [DOI] [PubMed] [Google Scholar]
- Heritage A. D., MacRae I. C. Degradation of lindane by cell-free preparations of Clostridium sphenoides. Appl Environ Microbiol. 1977 Aug;34(2):222–224. doi: 10.1128/aem.34.2.222-224.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivie G. W., Dorough H. W., Alley E. G. Photodecomposition of mirex on silica gel chromatoplates exposed to natural and artificial light. J Agric Food Chem. 1974 Nov-Dec;22(6):933–935. doi: 10.1021/jf60196a047. [DOI] [PubMed] [Google Scholar]
- Moseman R. F., Crist H. L., Edgerton T. R., Ward M. K. Electron capture gas chromatographic determination of Kepone residues in environmental samples. Arch Environ Contam Toxicol. 1977;6(2-3):221–231. doi: 10.1007/BF02097763. [DOI] [PubMed] [Google Scholar]
- Uk S., Himel C. M., Dirks T. F. Mass spectral pattern of Mirex (dodecachlorooctahydro-1,3,4-metheno-2H-cyclobuta (cd) pentalene) and of Kepone (decachlorooctahydro-1,3,4-metheno-2H-cyclobuta (cd)-pentalen-2-one) and its application in residue analysis. Bull Environ Contam Toxicol. 1972 Apr;7(4):207–215. doi: 10.1007/BF01684400. [DOI] [PubMed] [Google Scholar]
- YCAS M., STARR T. J. The effect of glycine and protoporphyrin on a cytochrome deficient yeast. J Bacteriol. 1953 Jan;65(1):83–88. doi: 10.1128/jb.65.1.83-88.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
