Abstract
Micrococcus luteus cells died relatively quickly when they were added to natural soil. The results were similar for soil in nature and as soil samples in the laboratory. The cells died more quickly when nutrients were added to the soil. Those cells that survived soil residence exhibited a temporary lengthening of the time required for colonial growth and pigment formation on laboratory media. They had not gained increased survival capability, however. This was evident when they were retested in soil. Good survival of the M. luteus cells was noted when the soil was incubated at lowered temperatures. Some protection to the cells was provided by slow drying of the soil during incubation or by addition of NaCl. Microscopic examination of the soil revealed that the M. luteus cells were being physically destroyed and that two different bacteria were growing in the areas where the cells had lysed. It was suggested that bacterial predators in the soil might be associated with the death of the M. luteus cells.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burleigh I. G., Dawes E. A. Studies on the endogenous metabolism and senescence of starved Sarcina lutea. Biochem J. 1967 Jan;102(1):236–250. doi: 10.1042/bj1020236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casida L. E. Bacterial Predators of Micrococcus luteus in Soil. Appl Environ Microbiol. 1980 May;39(5):1035–1041. doi: 10.1128/aem.39.5.1035-1041.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casida L. E., Jr Observation of microorganisms in soil and other natural habitats. Appl Microbiol. 1969 Dec;18(6):1065–1071. doi: 10.1128/am.18.6.1065-1071.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habte M., Alexander M. Further evidence for the regulation of bacterial populations in soil by protozoa. Arch Microbiol. 1977 Jun 20;113(3):181–183. doi: 10.1007/BF00492022. [DOI] [PubMed] [Google Scholar]
- Klein D. A., Casida L. E., Jr Escherichia coli die-out from normal soil as related to nutrient availability and the indigenous microflora. Can J Microbiol. 1967 Nov;13(11):1461–1470. doi: 10.1139/m67-194. [DOI] [PubMed] [Google Scholar]
- Labeda D. P., Liu K. C., Casida L. E., Jr Colonization of soil by Arthrobacter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy. Appl Environ Microbiol. 1976 Apr;31(4):551–561. doi: 10.1128/aem.31.4.551-561.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J. B., Salonius P. O., Chase F. E. A note on the differential response of arthrobacter spp. and pseudomonas spp. to drying in soil. Can J Microbiol. 1965 Aug;11(4):746–748. doi: 10.1139/m65-100. [DOI] [PubMed] [Google Scholar]
- Schmitz J. A., Olson L. D. Duration of viability and the growth and expiration rates of group E streptococci in soil. Appl Microbiol. 1973 Feb;25(2):180–183. doi: 10.1128/am.25.2.180-183.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]