Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o1–o2. doi: 10.1107/S160053680706182X

(2E)-3-(4-Methyl­phen­yl)-1-(3-nitro­phen­yl)prop-2-en-1-one

Jerry P Jasinski a,*, Ray J Butcher b, B Narayana c, K Lakshmana c, H S Yathirajan d
PMCID: PMC2914892  PMID: 21200665

Abstract

The title compound, C16H13NO3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the 4-methyl­phenyl and 3-nitro­phenyl groups is 4.0 (3)° in mol­ecule A and 16.2 (7)° in mol­ecule B. Inter­molecular C—H⋯O hydrogen bonding involving the O atoms of the 3-nitro­phenyl group of both independent mol­ecules link the mol­ecules into layers approximately parallel to the (110) plane. The layers are held together by π–π stacking inter­actions between the 4-methyl­phenyl ring of mol­ecule A and the 3-nitro­phenyl ring of mol­ecule B of the adjacent layer, with the distance between the centroids of inter­acting rings being 3.6987 (7) Å.

Related literature

For related structures, see: Butcher, Jasinski, Narayana et al. (2007); Butcher, Jasinski, Yathirajan, Narayana et al. (2007); Butcher, Jasinski, Yathirajan, Veena et al. (2007); Rosli et al. (2007); Patil et al. (2007). For related literature, see: Dimmock et al. (1999); Go et al. (2005); Goto et al. (1991); Uchida et al. (1998); Tam et al. (1989).graphic file with name e-64-000o1-scheme1.jpg

Experimental

Crystal data

  • C16H13NO3

  • M r = 267.27

  • Triclinic, Inline graphic

  • a = 8.0951 (3) Å

  • b = 11.5088 (5) Å

  • c = 14.6970 (5) Å

  • α = 80.351 (3)°

  • β = 74.830 (3)°

  • γ = 84.416 (3)°

  • V = 1300.78 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.41 × 0.35 × 0.28 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.874, T max = 0.974

  • 19776 measured reflections

  • 8636 independent reflections

  • 4667 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.127

  • S = 0.97

  • 8636 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706182X/ci2518sup1.cif

e-64-000o1-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706182X/ci2518Isup2.hkl

e-64-000o1-Isup2.hkl (422.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯O2B 0.93 2.55 3.4644 (16) 170
C11A—H11A⋯O2B 0.93 2.59 3.5156 (14) 176
C2B—H2B⋯O2Ai 0.93 2.51 3.4311 (16) 171
C14A—H14A⋯O3Aii 0.93 2.54 3.4455 (16) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

KL thanks Mangalore University for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones can be easily obtained from the Claisen-Schmidt reaction of aromatic aldehydes and aromatic ketones. Chalcones have been reported to possess many useful properties including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumour and anticancer activities (Dimmock et al. 1999; Go et al. 2005). They are also important intermediates in organic synthesis. Among several organic compounds reported to have NLO properties, chalcone derivatives are recognized material because of their excellent blue light transmittance and good crystallization ability. They provide necessary configuration to show NLO properties having two planar rings connected through a conjugated double bond (Goto et al. 1991; Uchida et al. 1998; Tam et al. 1989). The crystal structures of 1-(3-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Narayana et al., 2007), (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Veena et al., 2007), (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher, Jasinski, Yathirajan, Narayana et al. 2007), 3-(dimethylaminophenyl)-1-(3-nitrophenyl)prop-2-en-1-one (Rosli et al. 2007) and 3-(5-bromo-2-thienyl)-1-(4-nitrophenyl)prop-2-en-1-one (Patil et al. 2007) have been reported. We report here the crystal structure of a new chalcone, the title compound.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the 4-methylphenyl and 3-nitrophenyl groups is 4.0 (3)° in molecule A and 16.2 (7)° in molecule B. Crystal packing is stabilized by intermolecular C—H···O hydrogen bonding involving the O atoms on the 3-nitrophenyl group of both indpendent molecules. These hydrogen bonds (Table 1) link the molecules into a layer approximately parallel to the (1 1 0) plane (Fig. 2). Intermolecular π-π stacking interactions occur between 4-methylphenyl ring of molecule A at (x, y, z) and 3-nitrophenyl ring of molecule B of the adjacent layer at (1 - x, 1 - y, -z), with the distance between the centroids of interacting rings being 3.6987 (7) Å.

Experimental

A solution of 1-(3-nitrophenyl)ethanone (1.65 g, 0.01 mol) and 4-methylbenzaldehyde (1.20 g, 0.01 mol) in ethanol (25 ml) was stirred well and 10% NaOH solution (5 ml) was added. The reaction mixture was stirred for about 6 h and filtered. The product was crystallized from acetone (m.p. 414–416 K). Single crystals suitable for X-ray structure determination were grown by slow evaporation of an acetone solution of the title compound at room temperature. Analysis found: C 71.82, H 4.85, N 5.20%; C16H13NO3 requires: C 71.90, H 4.90, N 5.24%.

Refinement

All H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.16–1.21Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.

Crystal data

C16H13NO3 Z = 4
Mr = 267.27 F000 = 560
Triclinic, P1 Dx = 1.365 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.0951 (3) Å Cell parameters from 6626 reflections
b = 11.5088 (5) Å θ = 4.5–32.4º
c = 14.6970 (5) Å µ = 0.10 mm1
α = 80.351 (3)º T = 296 (2) K
β = 74.830 (3)º Prism, pale yellow
γ = 84.416 (3)º 0.41 × 0.35 × 0.28 mm
V = 1300.78 (9) Å3

Data collection

Oxford Diffraction Gemini R CCD diffractometer 8636 independent reflections
Radiation source: fine-focus sealed tube 4667 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.027
Detector resolution: 10.5081 pixels mm-1 θmax = 32.5º
T = 296(2) K θmin = 4.5º
φ and ω scans h = −12→12
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) k = −15→17
Tmin = 0.874, Tmax = 0.974 l = −22→22
19776 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.127   w = 1/[σ2(Fo2) + (0.0653P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.001
8636 reflections Δρmax = 0.31 e Å3
363 parameters Δρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A −0.10825 (12) 0.78753 (8) 0.47805 (6) 0.0472 (2)
O2A −0.17664 (12) 0.86596 (9) 0.15922 (6) 0.0496 (2)
O3A −0.03310 (14) 0.76460 (9) 0.05116 (7) 0.0600 (3)
N1A −0.07106 (13) 0.78738 (9) 0.13266 (7) 0.0367 (2)
C1A 0.05600 (14) 0.67882 (10) 0.35935 (8) 0.0291 (2)
C2A 0.17987 (15) 0.59163 (10) 0.33036 (8) 0.0342 (3)
H2A 0.2367 0.5488 0.3737 0.041*
C3A 0.22047 (15) 0.56733 (11) 0.23722 (9) 0.0388 (3)
H3A 0.3027 0.5077 0.2191 0.047*
C4A 0.13914 (15) 0.63148 (11) 0.17161 (8) 0.0360 (3)
H4A 0.1660 0.6165 0.1090 0.043*
C5A 0.01681 (14) 0.71848 (10) 0.20163 (8) 0.0294 (2)
C6A −0.02749 (14) 0.74350 (10) 0.29349 (8) 0.0302 (2)
H6A −0.1114 0.8023 0.3114 0.036*
C7A 0.00284 (14) 0.70867 (10) 0.45916 (8) 0.0320 (2)
C8A 0.08663 (15) 0.64361 (10) 0.53138 (8) 0.0341 (3)
H8A 0.1754 0.5877 0.5140 0.041*
C9A 0.03681 (15) 0.66381 (10) 0.62182 (8) 0.0341 (3)
H9A −0.0554 0.7183 0.6359 0.041*
C10A 0.10965 (14) 0.61071 (10) 0.70091 (8) 0.0303 (2)
C11A 0.24015 (15) 0.52191 (10) 0.69233 (8) 0.0329 (3)
H11A 0.2816 0.4930 0.6347 0.039*
C12A 0.30868 (15) 0.47626 (11) 0.76861 (8) 0.0354 (3)
H12A 0.3952 0.4166 0.7616 0.043*
C13A 0.25029 (15) 0.51804 (11) 0.85585 (8) 0.0362 (3)
C14A 0.11819 (16) 0.60523 (12) 0.86462 (8) 0.0400 (3)
H14A 0.0763 0.6336 0.9225 0.048*
C15A 0.04786 (16) 0.65058 (11) 0.78910 (8) 0.0387 (3)
H15A −0.0415 0.7082 0.7970 0.046*
C16A 0.32905 (19) 0.47144 (14) 0.93769 (9) 0.0519 (4)
H16A 0.3731 0.5354 0.9569 0.078*
H16B 0.4208 0.4144 0.9182 0.078*
H16C 0.2436 0.4348 0.9903 0.078*
O1B 0.39815 (12) 0.28759 (8) 0.17553 (7) 0.0511 (2)
O2B 0.38505 (13) 0.39995 (8) 0.47951 (7) 0.0530 (3)
O3B 0.47675 (14) 0.27633 (10) 0.58517 (7) 0.0658 (3)
N1B 0.45688 (13) 0.30623 (10) 0.50460 (7) 0.0416 (3)
C1B 0.55580 (14) 0.17912 (10) 0.27830 (8) 0.0313 (2)
C2B 0.65291 (15) 0.07736 (11) 0.30205 (9) 0.0371 (3)
H2B 0.6974 0.0269 0.2572 0.045*
C3B 0.68412 (16) 0.05034 (11) 0.39189 (9) 0.0405 (3)
H3B 0.7478 −0.0185 0.4071 0.049*
C4B 0.62101 (15) 0.12525 (11) 0.45862 (9) 0.0391 (3)
H4B 0.6426 0.1084 0.5187 0.047*
C5B 0.52520 (14) 0.22563 (10) 0.43411 (8) 0.0325 (3)
C6B 0.48975 (14) 0.25382 (10) 0.34598 (8) 0.0329 (3)
H6B 0.4229 0.3216 0.3321 0.039*
C7B 0.51234 (15) 0.21124 (11) 0.18375 (8) 0.0359 (3)
C8B 0.60755 (16) 0.15048 (11) 0.10342 (8) 0.0377 (3)
H8B 0.7049 0.1024 0.1084 0.045*
C9B 0.55435 (15) 0.16429 (10) 0.02373 (8) 0.0349 (3)
H9B 0.4563 0.2134 0.0230 0.042*
C10B 0.63097 (14) 0.11180 (10) −0.06276 (8) 0.0315 (2)
C11B 0.76586 (15) 0.02570 (11) −0.06979 (9) 0.0371 (3)
H11B 0.8095 −0.0019 −0.0171 0.045*
C12B 0.83539 (15) −0.01901 (11) −0.15411 (8) 0.0377 (3)
H12B 0.9257 −0.0760 −0.1574 0.045*
C13B 0.77214 (16) 0.02004 (11) −0.23457 (9) 0.0368 (3)
C14B 0.63582 (16) 0.10371 (11) −0.22680 (8) 0.0372 (3)
H14B 0.5906 0.1302 −0.2791 0.045*
C15B 0.56619 (15) 0.14839 (11) −0.14243 (8) 0.0366 (3)
H15B 0.4742 0.2040 −0.1388 0.044*
C16B 0.84893 (18) −0.02696 (13) −0.32704 (9) 0.0475 (3)
H16D 0.8871 0.0373 −0.3767 0.071*
H16E 0.7641 −0.0671 −0.3429 0.071*
H16F 0.9446 −0.0811 −0.3205 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0582 (6) 0.0466 (6) 0.0373 (5) 0.0196 (4) −0.0185 (4) −0.0101 (4)
O2A 0.0500 (5) 0.0565 (6) 0.0455 (5) 0.0211 (5) −0.0237 (4) −0.0121 (5)
O3A 0.0856 (8) 0.0647 (7) 0.0368 (5) 0.0213 (5) −0.0313 (5) −0.0167 (5)
N1A 0.0390 (6) 0.0390 (6) 0.0347 (5) 0.0027 (5) −0.0154 (4) −0.0061 (4)
C1A 0.0325 (6) 0.0252 (6) 0.0309 (6) −0.0012 (4) −0.0124 (4) −0.0013 (4)
C2A 0.0374 (6) 0.0291 (6) 0.0359 (6) 0.0043 (5) −0.0131 (5) −0.0012 (5)
C3A 0.0396 (7) 0.0336 (7) 0.0410 (7) 0.0071 (5) −0.0083 (5) −0.0067 (5)
C4A 0.0418 (7) 0.0341 (7) 0.0326 (6) 0.0000 (5) −0.0107 (5) −0.0058 (5)
C5A 0.0300 (5) 0.0293 (6) 0.0299 (5) −0.0001 (4) −0.0107 (4) −0.0028 (5)
C6A 0.0315 (6) 0.0261 (6) 0.0343 (6) 0.0018 (4) −0.0122 (4) −0.0041 (5)
C7A 0.0340 (6) 0.0300 (6) 0.0324 (6) −0.0003 (5) −0.0103 (5) −0.0033 (5)
C8A 0.0353 (6) 0.0340 (7) 0.0335 (6) 0.0038 (5) −0.0130 (5) −0.0029 (5)
C9A 0.0390 (6) 0.0296 (6) 0.0362 (6) 0.0043 (5) −0.0150 (5) −0.0059 (5)
C10A 0.0311 (6) 0.0324 (6) 0.0288 (5) −0.0020 (5) −0.0095 (4) −0.0056 (5)
C11A 0.0385 (6) 0.0328 (6) 0.0293 (6) −0.0004 (5) −0.0105 (5) −0.0077 (5)
C12A 0.0370 (6) 0.0366 (7) 0.0331 (6) 0.0037 (5) −0.0108 (5) −0.0063 (5)
C13A 0.0380 (6) 0.0414 (7) 0.0311 (6) −0.0010 (5) −0.0136 (5) −0.0038 (5)
C14A 0.0452 (7) 0.0480 (8) 0.0290 (6) 0.0035 (6) −0.0105 (5) −0.0130 (5)
C15A 0.0419 (7) 0.0389 (7) 0.0383 (6) 0.0082 (5) −0.0147 (5) −0.0130 (5)
C16A 0.0619 (9) 0.0624 (10) 0.0353 (7) 0.0088 (7) −0.0240 (6) −0.0064 (6)
O1B 0.0595 (6) 0.0492 (6) 0.0496 (5) 0.0225 (5) −0.0259 (4) −0.0164 (4)
O2B 0.0731 (7) 0.0400 (6) 0.0460 (5) 0.0174 (5) −0.0179 (5) −0.0135 (4)
O3B 0.0876 (8) 0.0755 (8) 0.0382 (5) 0.0277 (6) −0.0280 (5) −0.0186 (5)
N1B 0.0448 (6) 0.0441 (7) 0.0365 (6) 0.0055 (5) −0.0113 (5) −0.0105 (5)
C1B 0.0278 (5) 0.0314 (6) 0.0338 (6) 0.0008 (5) −0.0060 (4) −0.0062 (5)
C2B 0.0344 (6) 0.0346 (7) 0.0401 (6) 0.0040 (5) −0.0053 (5) −0.0092 (5)
C3B 0.0380 (7) 0.0359 (7) 0.0436 (7) 0.0085 (5) −0.0098 (5) −0.0015 (5)
C4B 0.0391 (7) 0.0395 (7) 0.0371 (6) 0.0024 (5) −0.0122 (5) 0.0006 (5)
C5B 0.0311 (6) 0.0334 (6) 0.0319 (6) 0.0005 (5) −0.0062 (5) −0.0059 (5)
C6B 0.0318 (6) 0.0294 (6) 0.0381 (6) 0.0015 (5) −0.0114 (5) −0.0043 (5)
C7B 0.0368 (6) 0.0331 (7) 0.0396 (7) 0.0023 (5) −0.0125 (5) −0.0086 (5)
C8B 0.0389 (6) 0.0377 (7) 0.0381 (6) 0.0051 (5) −0.0130 (5) −0.0082 (5)
C9B 0.0348 (6) 0.0308 (6) 0.0376 (6) 0.0000 (5) −0.0090 (5) −0.0018 (5)
C10B 0.0332 (6) 0.0298 (6) 0.0315 (6) −0.0042 (5) −0.0096 (4) −0.0009 (5)
C11B 0.0422 (7) 0.0348 (7) 0.0360 (6) −0.0011 (5) −0.0172 (5) 0.0010 (5)
C12B 0.0351 (6) 0.0354 (7) 0.0408 (7) 0.0018 (5) −0.0087 (5) −0.0042 (5)
C13B 0.0403 (7) 0.0345 (7) 0.0368 (6) −0.0098 (5) −0.0097 (5) −0.0035 (5)
C14B 0.0399 (7) 0.0398 (7) 0.0344 (6) −0.0048 (5) −0.0156 (5) −0.0010 (5)
C15B 0.0369 (6) 0.0327 (7) 0.0424 (7) 0.0003 (5) −0.0164 (5) −0.0029 (5)
C16B 0.0509 (8) 0.0494 (8) 0.0419 (7) −0.0040 (6) −0.0095 (6) −0.0084 (6)

Geometric parameters (Å, °)

O1A—C7A 1.2266 (14) O2B—N1B 1.2224 (14)
O2A—N1A 1.2222 (13) O3B—N1B 1.2242 (14)
O3A—N1A 1.2227 (13) N1B—O2B 1.2224 (14)
N1A—C5A 1.4698 (15) N1B—C5B 1.4704 (15)
C1A—C2A 1.3849 (16) C1B—C6B 1.3904 (16)
C1A—C6A 1.3967 (16) C1B—C2B 1.3924 (17)
C1A—C7A 1.5050 (15) C1B—C7B 1.5000 (17)
C2A—C3A 1.3910 (16) C2B—C3B 1.3876 (17)
C2A—H2A 0.93 C2B—H2B 0.93
C3A—C4A 1.3811 (17) C3B—C4B 1.3790 (18)
C3A—H3A 0.93 C3B—H3B 0.93
C4A—C5A 1.3800 (17) C4B—C5B 1.3778 (17)
C4A—H4A 0.93 C4B—H4B 0.93
C5A—C6A 1.3751 (15) C5B—C6B 1.3788 (16)
C6A—H6A 0.93 C6B—H6B 0.93
C7A—C8A 1.4692 (16) C7B—C8B 1.4739 (16)
C8A—C9A 1.3372 (16) C8B—C9B 1.3307 (16)
C8A—H8A 0.93 C8B—H8B 0.93
C9A—C10A 1.4571 (16) C9B—C10B 1.4620 (16)
C9A—H9A 0.93 C9B—H9B 0.93
C10A—C11A 1.3928 (16) C10B—C15B 1.3916 (16)
C10A—C15A 1.3985 (15) C10B—C11B 1.3963 (17)
C11A—C12A 1.3827 (16) C11B—C12B 1.3819 (17)
C11A—H11A 0.93 C11B—H11B 0.93
C12A—C13A 1.3943 (16) C12B—C13B 1.3988 (17)
C12A—H12A 0.93 C12B—H12B 0.93
C13A—C14A 1.3890 (18) C13B—C14B 1.3865 (18)
C13A—C16A 1.5031 (17) C13B—C16B 1.5050 (17)
C14A—C15A 1.3810 (17) C14B—C15B 1.3825 (17)
C14A—H14A 0.93 C14B—H14B 0.93
C15A—H15A 0.93 C15B—H15B 0.93
C16A—H16A 0.96 C16B—H16D 0.96
C16A—H16B 0.96 C16B—H16E 0.96
C16A—H16C 0.96 C16B—H16F 0.96
O1B—C7B 1.2272 (15)
O2A—N1A—O3A 123.18 (11) O2B—N1B—O3B 123.47 (11)
O2A—N1A—C5A 118.36 (9) O2B—N1B—O3B 123.47 (11)
O3A—N1A—C5A 118.45 (10) O2B—N1B—C5B 118.42 (10)
C2A—C1A—C6A 119.17 (10) O2B—N1B—C5B 118.42 (10)
C2A—C1A—C7A 123.95 (10) O3B—N1B—C5B 118.11 (11)
C6A—C1A—C7A 116.88 (10) C6B—C1B—C2B 119.13 (11)
C1A—C2A—C3A 120.87 (11) C6B—C1B—C7B 117.43 (11)
C1A—C2A—H2A 119.6 C2B—C1B—C7B 123.40 (10)
C3A—C2A—H2A 119.6 C3B—C2B—C1B 120.77 (11)
C4A—C3A—C2A 120.24 (12) C3B—C2B—H2B 119.6
C4A—C3A—H3A 119.9 C1B—C2B—H2B 119.6
C2A—C3A—H3A 119.9 C4B—C3B—C2B 120.20 (12)
C5A—C4A—C3A 118.08 (11) C4B—C3B—H3B 119.9
C5A—C4A—H4A 121.0 C2B—C3B—H3B 119.9
C3A—C4A—H4A 121.0 C5B—C4B—C3B 118.39 (12)
C6A—C5A—C4A 122.98 (11) C5B—C4B—H4B 120.8
C6A—C5A—N1A 118.30 (10) C3B—C4B—H4B 120.8
C4A—C5A—N1A 118.72 (10) C4B—C5B—C6B 122.72 (11)
C5A—C6A—C1A 118.66 (11) C4B—C5B—N1B 118.99 (11)
C5A—C6A—H6A 120.7 C6B—C5B—N1B 118.29 (11)
C1A—C6A—H6A 120.7 C5B—C6B—C1B 118.78 (11)
O1A—C7A—C8A 121.56 (10) C5B—C6B—H6B 120.6
O1A—C7A—C1A 119.20 (10) C1B—C6B—H6B 120.6
C8A—C7A—C1A 119.24 (10) O1B—C7B—C8B 121.84 (11)
C9A—C8A—C7A 120.81 (11) O1B—C7B—C1B 118.90 (11)
C9A—C8A—H8A 119.6 C8B—C7B—C1B 119.26 (11)
C7A—C8A—H8A 119.6 C9B—C8B—C7B 120.09 (12)
C8A—C9A—C10A 127.80 (11) C9B—C8B—H8B 120.0
C8A—C9A—H9A 116.1 C7B—C8B—H8B 120.0
C10A—C9A—H9A 116.1 C8B—C9B—C10B 128.03 (12)
C11A—C10A—C15A 118.21 (10) C8B—C9B—H9B 116.0
C11A—C10A—C9A 122.66 (10) C10B—C9B—H9B 116.0
C15A—C10A—C9A 119.13 (11) C15B—C10B—C11B 117.82 (11)
C12A—C11A—C10A 120.69 (10) C15B—C10B—C9B 118.74 (11)
C12A—C11A—H11A 119.7 C11B—C10B—C9B 123.44 (10)
C10A—C11A—H11A 119.7 C12B—C11B—C10B 120.84 (11)
C11A—C12A—C13A 121.17 (12) C12B—C11B—H11B 119.6
C11A—C12A—H12A 119.4 C10B—C11B—H11B 119.6
C13A—C12A—H12A 119.4 C11B—C12B—C13B 121.04 (12)
C14A—C13A—C12A 117.97 (11) C11B—C12B—H12B 119.5
C14A—C13A—C16A 120.87 (11) C13B—C12B—H12B 119.5
C12A—C13A—C16A 121.16 (12) C14B—C13B—C12B 118.00 (11)
C15A—C14A—C13A 121.26 (11) C14B—C13B—C16B 120.67 (11)
C15A—C14A—H14A 119.4 C12B—C13B—C16B 121.33 (12)
C13A—C14A—H14A 119.4 C15B—C14B—C13B 120.95 (11)
C14A—C15A—C10A 120.66 (12) C15B—C14B—H14B 119.5
C14A—C15A—H15A 119.7 C13B—C14B—H14B 119.5
C10A—C15A—H15A 119.7 C14B—C15B—C10B 121.32 (12)
C13A—C16A—H16A 109.5 C14B—C15B—H15B 119.3
C13A—C16A—H16B 109.5 C10B—C15B—H15B 119.3
H16A—C16A—H16B 109.5 C13B—C16B—H16D 109.5
C13A—C16A—H16C 109.5 C13B—C16B—H16E 109.5
H16A—C16A—H16C 109.5 H16D—C16B—H16E 109.5
H16B—C16A—H16C 109.5 C13B—C16B—H16F 109.5
O2B—O2B—N1B 0(10) H16D—C16B—H16F 109.5
O2B—N1B—O2B 0.00 (11) H16E—C16B—H16F 109.5
C6A—C1A—C2A—C3A −0.59 (16) C6B—C1B—C2B—C3B −0.10 (16)
C7A—C1A—C2A—C3A 178.84 (10) C7B—C1B—C2B—C3B −177.82 (10)
C1A—C2A—C3A—C4A 1.01 (17) C1B—C2B—C3B—C4B −0.93 (17)
C2A—C3A—C4A—C5A −0.60 (17) C2B—C3B—C4B—C5B 0.89 (17)
C3A—C4A—C5A—C6A −0.22 (17) C3B—C4B—C5B—C6B 0.17 (17)
C3A—C4A—C5A—N1A −179.90 (10) C3B—C4B—C5B—N1B 179.91 (10)
O2A—N1A—C5A—C6A 1.82 (15) O2B—N1B—C5B—C4B 173.67 (11)
O3A—N1A—C5A—C6A −179.32 (10) O2B—N1B—C5B—C4B 173.67 (11)
O2A—N1A—C5A—C4A −178.48 (10) O3B—N1B—C5B—C4B −5.53 (16)
O3A—N1A—C5A—C4A 0.38 (15) O2B—N1B—C5B—C6B −6.57 (16)
C4A—C5A—C6A—C1A 0.62 (16) O2B—N1B—C5B—C6B −6.57 (16)
N1A—C5A—C6A—C1A −179.69 (9) O3B—N1B—C5B—C6B 174.22 (11)
C2A—C1A—C6A—C5A −0.20 (15) C4B—C5B—C6B—C1B −1.18 (17)
C7A—C1A—C6A—C5A −179.68 (9) N1B—C5B—C6B—C1B 179.07 (9)
C2A—C1A—C7A—O1A 179.98 (11) C2B—C1B—C6B—C5B 1.12 (15)
C6A—C1A—C7A—O1A −0.57 (15) C7B—C1B—C6B—C5B 178.98 (10)
C2A—C1A—C7A—C8A 0.68 (16) C6B—C1B—C7B—O1B −13.01 (16)
C6A—C1A—C7A—C8A −179.87 (9) C2B—C1B—C7B—O1B 164.75 (11)
O1A—C7A—C8A—C9A 4.01 (17) C6B—C1B—C7B—C8B 167.00 (10)
C1A—C7A—C8A—C9A −176.71 (10) C2B—C1B—C7B—C8B −15.23 (16)
C7A—C8A—C9A—C10A −177.55 (10) O1B—C7B—C8B—C9B −10.23 (18)
C8A—C9A—C10A—C11A −4.54 (18) C1B—C7B—C8B—C9B 169.75 (10)
C8A—C9A—C10A—C15A 174.93 (11) C7B—C8B—C9B—C10B −179.97 (10)
C15A—C10A—C11A—C12A −1.23 (16) C8B—C9B—C10B—C15B −172.74 (11)
C9A—C10A—C11A—C12A 178.24 (10) C8B—C9B—C10B—C11B 7.71 (18)
C10A—C11A—C12A—C13A −0.41 (17) C15B—C10B—C11B—C12B 1.75 (16)
C11A—C12A—C13A—C14A 1.45 (17) C9B—C10B—C11B—C12B −178.70 (10)
C11A—C12A—C13A—C16A −177.81 (11) C10B—C11B—C12B—C13B −0.39 (17)
C12A—C13A—C14A—C15A −0.83 (18) C11B—C12B—C13B—C14B −0.96 (16)
C16A—C13A—C14A—C15A 178.43 (12) C11B—C12B—C13B—C16B 179.09 (10)
C13A—C14A—C15A—C10A −0.82 (19) C12B—C13B—C14B—C15B 0.92 (17)
C11A—C10A—C15A—C14A 1.84 (17) C16B—C13B—C14B—C15B −179.13 (10)
C9A—C10A—C15A—C14A −177.65 (11) C13B—C14B—C15B—C10B 0.48 (17)
O2B—O2B—N1B—O3B 0.00 (5) C11B—C10B—C15B—C14B −1.80 (16)
O2B—O2B—N1B—C5B 0.00 (8) C9B—C10B—C15B—C14B 178.63 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2A—H2A···O2B 0.93 2.55 3.4644 (16) 170
C11A—H11A···O2B 0.93 2.59 3.5156 (14) 176
C2B—H2B···O2Ai 0.93 2.51 3.4311 (16) 171
C14A—H14A···O3Aii 0.93 2.54 3.4455 (16) 164

Symmetry codes: (i) x+1, y−1, z; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2518).

References

  1. Bruker (2000). SHELXTL Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660. [DOI] [PMC free article] [PubMed]
  3. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007). Acta Cryst. E63, o3833.
  4. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, o3680.
  5. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  6. Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem.12, 483–499.
  7. Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
  8. Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  9. Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o785–o786.
  10. Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.
  11. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  12. Tam, W., Gurein, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett.154, 93–96.
  13. Uchida, J., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdeuyim, A. & Wadanabe, Y. (1998). Mol. Cryst. Liq. Cryst.315, 135–140.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706182X/ci2518sup1.cif

e-64-000o1-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706182X/ci2518Isup2.hkl

e-64-000o1-Isup2.hkl (422.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES