Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o3. doi: 10.1107/S1600536807062320

3,5-Dibromo-2-hydroxy­benzoic acid

Chong-Bo Liu a, Dan-Dan Chen b, Hui-Liang Wen c,*
PMCID: PMC2914893  PMID: 21200863

Abstract

The title compound, C7H4Br2O3, has an intra­molecular O—H⋯O=C hydrogen bond and aggregates to form hydrogen-bonded dimers via O—H⋯O inter­actions. The formation of zigzag one-dimensional mol­ecular tapes via C—H⋯Br inter­actions and π–π stacking inter­actions (inter­planar separation = 3.42 Å) completes the crystal structure.

Related literature

For related literature, see: Chiari et al. (1981); Jin & Xiao (2005).graphic file with name e-64-000o3-scheme1.jpg

Experimental

Crystal data

  • C7H4Br2O3

  • M r = 295.92

  • Monoclinic, Inline graphic

  • a = 10.770 (3) Å

  • b = 11.082 (3) Å

  • c = 14.879 (4) Å

  • β = 105.606 (3)°

  • V = 1710.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.44 mm−1

  • T = 293 (2) K

  • 0.50 × 0.31 × 0.21 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.088, T max = 0.243 (expected range = 0.050–0.138)

  • 6362 measured reflections

  • 1599 independent reflections

  • 1286 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.061

  • S = 1.79

  • 1599 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062320/gg2052sup1.cif

e-64-000o3-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062320/gg2052Isup2.hkl

e-64-000o3-Isup2.hkl (78.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.87 2.684 (3) 175
O3—H3⋯O2 0.82 1.93 2.648 (3) 145
C3—H3A⋯Br1ii 0.93 2.89 3.810 (3) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20662007).

supplementary crystallographic information

Comment

The compound 2-hydroxybenzoic acid (salicylic acid) and its derivatives have been widely studied as medicines or important active pharmaceutical intermediates (Chiari et al., 1981; Jin & Xiao, 2005). Herein, we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the atoms O1, O2, O3, Br1, Br2, C1 and aromatic ring {C2,···,C7} are essentially coplanar with a mean deviation of 0.014 Å. The crystal packing is stabilized by intramolecular and intermolecular O—H···O and C—H···Br hydrogen bonds (Table 1).

Experimental

Crystals appropriate for data collection were obtained by recrystallization from ethanol (m.p. 500–501 K).

Refinement

The hydroxyl H atom and the carboxylate H atom were located from difference Fourier map but were refined using the riding model with O—H distance restrained to 0.82Å and Uiso(H) = 1.5Ueq(O); while all other H atoms were placed at geometrical idealized positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound depicted with 30% probability displacement ellipsoids.

Crystal data

C7H4Br2O3 F000 = 1120
Mr = 295.92 Dx = 2.298 Mg m3
Monoclinic, C2/c Melting point: 500 K
Hall symbol: -C 2yc Mo Kα radiation λ = 0.71073 Å
a = 10.770 (3) Å Cell parameters from 2346 reflections
b = 11.082 (3) Å θ = 2.7–26.3º
c = 14.879 (4) Å µ = 9.44 mm1
β = 105.606 (3)º T = 293 (2) K
V = 1710.4 (8) Å3 Block, light-yellow
Z = 8 0.50 × 0.31 × 0.21 mm

Data collection

Bruker SMART CCD diffractometer 1599 independent reflections
Radiation source: fine-focus sealed tube 1286 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.032
T = 293(2) K θmax = 25.5º
φ and ω scans θmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.088, Tmax = 0.243 k = −13→13
6362 measured reflections l = −17→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.061   w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
S = 1.79 (Δ/σ)max = 0.001
1599 reflections Δρmax = 0.82 e Å3
111 parameters Δρmin = −0.81 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.06441 (4) 0.35585 (3) 0.42603 (3) 0.07017 (19)
Br2 0.68570 (4) 0.02983 (4) 0.22295 (3) 0.05891 (17)
O1 1.2480 (2) −0.0861 (2) 0.49804 (18) 0.0543 (7)
H1 1.2875 −0.1464 0.5219 0.081*
O2 1.1105 (2) −0.2248 (2) 0.41973 (16) 0.0545 (7)
O3 0.8866 (2) −0.1506 (2) 0.31093 (18) 0.0560 (7)
H3 0.9422 −0.2005 0.3341 0.084*
C1 1.1390 (3) −0.1185 (3) 0.4393 (2) 0.0422 (9)
C2 1.0523 (3) −0.0171 (3) 0.3998 (2) 0.0376 (8)
C3 1.0907 (3) 0.1018 (3) 0.4246 (2) 0.0403 (9)
H3A 1.1712 0.1172 0.4654 0.048*
C4 1.0092 (3) 0.1959 (3) 0.3885 (2) 0.0412 (9)
C5 0.8890 (3) 0.1766 (3) 0.3280 (2) 0.0414 (9)
H5 0.8349 0.2410 0.3040 0.050*
C6 0.8509 (3) 0.0593 (3) 0.3040 (2) 0.0395 (9)
C7 0.9306 (3) −0.0390 (3) 0.3386 (2) 0.0387 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0482 (3) 0.0329 (2) 0.1040 (4) −0.00311 (18) −0.0233 (2) 0.0025 (2)
Br2 0.0371 (2) 0.0526 (3) 0.0726 (3) −0.00593 (18) −0.0101 (2) −0.0044 (2)
O1 0.0511 (16) 0.0353 (14) 0.0606 (17) 0.0064 (12) −0.0126 (13) 0.0036 (12)
O2 0.0583 (17) 0.0327 (15) 0.0596 (17) 0.0041 (12) −0.0064 (13) −0.0017 (12)
O3 0.0514 (16) 0.0348 (15) 0.0690 (18) −0.0019 (12) −0.0056 (13) −0.0074 (13)
C1 0.039 (2) 0.043 (2) 0.041 (2) 0.0019 (17) 0.0051 (17) 0.0040 (17)
C2 0.040 (2) 0.033 (2) 0.037 (2) 0.0013 (16) 0.0032 (17) 0.0044 (15)
C3 0.0332 (19) 0.037 (2) 0.043 (2) −0.0024 (16) −0.0032 (16) 0.0013 (16)
C4 0.041 (2) 0.0296 (19) 0.047 (2) −0.0045 (15) 0.0024 (18) 0.0026 (16)
C5 0.0325 (19) 0.036 (2) 0.050 (2) 0.0017 (16) 0.0011 (17) 0.0028 (17)
C6 0.0326 (19) 0.041 (2) 0.041 (2) −0.0032 (16) 0.0026 (16) −0.0023 (16)
C7 0.042 (2) 0.035 (2) 0.037 (2) −0.0032 (17) 0.0082 (17) −0.0017 (16)

Geometric parameters (Å, °)

Br1—C4 1.905 (3) C2—C3 1.401 (4)
Br2—C6 1.890 (3) C2—C7 1.402 (5)
O1—C1 1.311 (4) C3—C4 1.375 (5)
O1—H1 0.8200 C3—H3A 0.9300
O2—C1 1.233 (4) C4—C5 1.381 (5)
O3—C7 1.348 (4) C5—C6 1.380 (4)
O3—H3 0.8200 C5—H5 0.9300
C1—C2 1.478 (5) C6—C7 1.397 (5)
C1—O1—H1 109.5 C3—C4—Br1 118.3 (3)
C7—O3—H3 109.5 C5—C4—Br1 119.9 (3)
O2—C1—O1 122.7 (3) C6—C5—C4 118.4 (3)
O2—C1—C2 122.9 (3) C6—C5—H5 120.8
O1—C1—C2 114.4 (3) C4—C5—H5 120.8
C3—C2—C7 119.5 (3) C5—C6—C7 122.0 (3)
C3—C2—C1 120.0 (3) C5—C6—Br2 119.4 (3)
C7—C2—C1 120.4 (3) C7—C6—Br2 118.6 (3)
C4—C3—C2 119.9 (3) O3—C7—C6 118.2 (3)
C4—C3—H3A 120.1 O3—C7—C2 123.2 (3)
C2—C3—H3A 120.1 C6—C7—C2 118.5 (3)
C3—C4—C5 121.7 (3)
O2—C1—C2—C3 −179.7 (3) C4—C5—C6—C7 −0.5 (5)
O1—C1—C2—C3 1.3 (5) C4—C5—C6—Br2 179.0 (3)
O2—C1—C2—C7 1.2 (6) C5—C6—C7—O3 −179.3 (3)
O1—C1—C2—C7 −177.8 (3) Br2—C6—C7—O3 1.2 (4)
C7—C2—C3—C4 −0.3 (5) C5—C6—C7—C2 0.5 (5)
C1—C2—C3—C4 −179.3 (3) Br2—C6—C7—C2 −179.0 (2)
C2—C3—C4—C5 0.2 (5) C3—C2—C7—O3 179.7 (3)
C2—C3—C4—Br1 178.9 (2) C1—C2—C7—O3 −1.2 (5)
C3—C4—C5—C6 0.2 (5) C3—C2—C7—C6 −0.1 (5)
Br1—C4—C5—C6 −178.5 (2) C1—C2—C7—C6 179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.87 2.684 (3) 175
O3—H3···O2 0.82 1.93 2.648 (3) 145
C3—H3A···Br1ii 0.93 2.89 3.810 (3) 172

Symmetry codes: (i) −x+5/2, −y−1/2, −z+1; (ii) −x+5/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2052).

References

  1. Bruker (1998). SHELXTL, SAINT and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chiari, G., Fronczek, F. R., Davis, S. T. & Gandour, R. D. (1981). Acta Cryst. B37, 1623–1625.
  3. Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1198–o1199.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062320/gg2052sup1.cif

e-64-000o3-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062320/gg2052Isup2.hkl

e-64-000o3-Isup2.hkl (78.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES