Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o5. doi: 10.1107/S1600536807060333

N,N′-Bis(2-phenyl­ethyl)naphthalene-1,8:4,5-bis­(dicarboximide)

Yuichiro Tsukada a, Naoko Nishimura a, Jin Mizuguchi a,*
PMCID: PMC2914895  PMID: 21200925

Abstract

The title compound, C30H22N2O4, is a derivative of the naphthalene–imide pigments that are characterized by significant overlap of the stacked mol­ecules. The mol­ecule has a centre of symmetry. Accordingly, the phenylethyl groups are arranged in a trans fashion across the skeleton. The phenyl rings are not parallel to the naphthalene­imide skeleton and are twisted in the same direction by 9.27 (7)°. The mol­ecules are, however, stacked with insignificant overlap along the stacking axis, as characterized by appreciable slide in the direction of either the short or the long mol­ecular axis, in marked contrast to the ordinary naphthalene–imide pigments.

Related literature

For perylene and perinone pigments, see: Herbst & Hunger (2004). Five structural studies of related compounds have been reported by Mizuguchi (2003a ,b , 2004), Mizuguchi et al. (2005) and Tsukada et al. (2007). For ethyl phenyl­perylene­imide-related papers, see: Hädicke & Graser (1986), Mizuguchi (1998a ,b , 2005a ,b ), Mizuguchi & Tojo (2002), Mizuguchi & Hino (2005), Mizuguchi et al. (2006). For related literature, see: Hino & Mizuguchi (2005); Mizuguchi (1981); Mizuguchi & Shimo (2006).graphic file with name e-64-000o5-scheme1.jpg

Experimental

Crystal data

  • C30H22N2O4

  • M r = 474.50

  • Monoclinic, Inline graphic

  • a = 7.70264 (14) Å

  • b = 4.93695 (9) Å

  • c = 29.9857 (5) Å

  • β = 97.9096 (7)°

  • V = 1129.44 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 93 (1) K

  • 0.5 × 0.14 × 0.06 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.790, T max = 0.955

  • 9315 measured reflections

  • 1993 independent reflections

  • 1723 reflections with F 2 > 2σ(F 2)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.124

  • S = 1.13

  • 1993 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807060333/is2244sup1.cif

e-64-000o5-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060333/is2244Isup2.hkl

e-64-000o5-Isup2.hkl (98.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound (PhENI) is a derivative of the naphthalene-imides which belongs to the category of perylene and perinone pigments (Herbst & Hunger, 2004). The difference between the perylene and perinone pigments is whether the central skeleton is perylene or naphthalene. Both pigments are typically characterized by close π-π stacks (Hädicke & Graser, 1986; Mizuguchi, 1998a, 2004; Mizuguchi & Shimo, 2006), giving rise to an additional absorption band in the visible region due to intermolecular excitonic interactions (Mizuguchi, 1998b). However, the present band disappears in the amorphous state where the molecules are randomly arranged. Accordingly, the color varies drastically from an amorphous phase to the crystalline one, as found in ethylphenylperyleneimide (EPhP), in which the naphthalene skeleton in PhENI is replaced by the perylene one (Mizuguchi, 1998b). Then, we struck on an idea that it would be ideal for electronic paper applications if the color change occurs in much shorter wavelength (for example, between colorless and blue) with a smaller chromphore such as PhENI. In this connection, an attempt has been made to synthesize PhENI and determine its crystal structure.

The title molecule is centrosymmetric (Fig. 1) and an asymmetric unit comprises a half of the molecule. Therefore, ethylphenyl groups are arranged in a trans fashion across the naphthaleneimide skeleton. The naphthalene-imide skeleton is entirely planar as indicated by a small deviation of 0.018 Å from the least-squares plane defined by atoms C1—C7/N1. The phenyl rings and the napthaleneimide skeleton are not in parallel, but twisted by 9.27 (7)°. Fig. 2 shows the molecular packing of PhENI. The molecules are stacked with insignificant overlap as characterized by significant slide in the direction of the short-molecular axis, quite in contrast to the ordinary naphthalene-imides (Mizuguchi, 2003a,b) and peryelene- imide pigments (Hädicke & Graser, 1986; Mizuguchi, 1998a, 2005a,b) where the molecules are directly stacked with an interplanar distance of about 3.3 - 3.5 Å. Since the π-π interactions are insignificant in PhENI, this compound gives no additional absorption band in the visible region and cannot be applied to electronic paper applications.

Experimental

PhENI was synthesized by reaction of naphthalene-1,4,5,8-tetra-carboxylic-dianhydride with 2-phenylethylamine at 403 K for 5 h. Then, the products were purified two times by sublimation under vacuum, using a five-zone furnace (Mizuguchi, 1981). Single crystals of PhENI were grown from solution in dimethylsulfoxide. After 36 h, a number of single crystals were obtained in the form of needles.

Refinement

All H atoms were placed in geometrically idealized position and constrained to ride on their parent atoms, with C—H = 0.95 and 0.99 Å, and Uiso(H) = 1.2Ueq(C)

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the 50% displacement parameters. Unlabelled atoms are related by the symmetry code (1 - x, 1 - y, 1 - z).

Fig. 2.

Fig. 2.

The crystal packing of PhENI. All H atoms have been omitted for clarity.

Crystal data

C30H22N2O4 F000 = 496.00
Mr = 474.50 Dx = 1.395 Mg m3
Monoclinic, P21/n Cu Kα radiation λ = 1.54187 Å
Hall symbol: -P 2yn Cell parameters from 7242 reflections
a = 7.70264 (14) Å θ = 3.0–68.2º
b = 4.93695 (9) Å µ = 0.76 mm1
c = 29.9857 (5) Å T = 93 (1) K
β = 97.9096 (7)º Needle, red
V = 1129.44 (3) Å3 0.5 × 0.14 × 0.06 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 1723 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.033
ω scans θmax = 68.2º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) h = −9→9
Tmin = 0.790, Tmax = 0.955 k = −5→5
9315 measured reflections l = −36→36
1993 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041   w = 1/[σ2(Fo2) + (0.066P)2 + 0.3352P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124 (Δ/σ)max < 0.001
S = 1.13 Δρmax = 0.20 e Å3
1993 reflections Δρmin = −0.31 e Å3
163 parameters Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.76514 (14) 0.4835 (2) 0.39308 (3) 0.0292 (3)
O2 0.47967 (13) −0.2072 (2) 0.45229 (3) 0.0276 (3)
N1 0.62139 (16) 0.1417 (2) 0.42345 (4) 0.0229 (3)
C5 0.9302 (2) 0.2343 (3) 0.45209 (5) 0.0220 (3)
C4 0.92479 (19) 0.0265 (3) 0.48430 (5) 0.0208 (3)
C1 0.61317 (19) −0.0739 (3) 0.45314 (5) 0.0229 (3)
C7 0.7696 (2) 0.3000 (3) 0.42016 (5) 0.0229 (3)
C2 0.77252 (19) −0.1294 (3) 0.48570 (5) 0.0218 (3)
C6 1.0809 (2) 0.3834 (3) 0.45135 (5) 0.0235 (3)
C8 0.4594 (2) 0.2050 (3) 0.39298 (5) 0.0256 (3)
C10 0.2576 (2) 0.0767 (3) 0.32490 (5) 0.0261 (3)
C3 0.7698 (2) −0.3308 (3) 0.51738 (5) 0.0232 (3)
C11 0.2122 (2) 0.2694 (3) 0.29170 (5) 0.0298 (4)
C12 0.0387 (2) 0.2994 (4) 0.27250 (6) 0.0351 (4)
C15 0.1263 (2) −0.0841 (3) 0.33819 (6) 0.0341 (4)
C14 −0.0470 (2) −0.0537 (4) 0.31927 (6) 0.0385 (4)
C9 0.4439 (2) 0.0522 (3) 0.34836 (5) 0.0273 (3)
C13 −0.0910 (2) 0.1393 (4) 0.28624 (6) 0.0360 (4)
H8b 0.4558 0.4020 0.3868 0.031*
H8a 0.3572 0.1598 0.4083 0.031*
H9b 0.5262 0.1294 0.3291 0.033*
H9a 0.4741 −0.1410 0.3539 0.033*
H11 0.3001 0.3814 0.2821 0.036*
H12 0.0090 0.4314 0.2497 0.042*
H15 0.1559 −0.2178 0.3607 0.041*
H14 −0.1353 −0.1651 0.3289 0.046*
H13 −0.2096 0.1616 0.2731 0.043*
H6 1.0838 0.5225 0.4296 0.028*
H3 0.6664 −0.4347 0.5181 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0300 (6) 0.0317 (7) 0.0252 (6) −0.0004 (4) 0.0009 (4) 0.0065 (4)
O2 0.0227 (5) 0.0297 (7) 0.0301 (6) −0.0049 (4) 0.0019 (4) 0.0004 (4)
N1 0.0213 (6) 0.0269 (8) 0.0199 (6) −0.0006 (5) 0.0004 (4) −0.0005 (5)
C5 0.0239 (8) 0.0232 (8) 0.0193 (7) 0.0007 (6) 0.0046 (5) −0.0024 (6)
C4 0.0232 (7) 0.0218 (8) 0.0182 (7) 0.0002 (6) 0.0055 (5) −0.0027 (5)
C1 0.0234 (7) 0.0251 (9) 0.0204 (7) 0.0000 (6) 0.0041 (5) −0.0034 (6)
C7 0.0256 (8) 0.0248 (9) 0.0187 (7) 0.0008 (6) 0.0038 (6) −0.0023 (6)
C2 0.0230 (7) 0.0235 (9) 0.0194 (7) −0.0006 (6) 0.0043 (5) −0.0034 (5)
C6 0.0277 (8) 0.0235 (9) 0.0200 (7) 0.0005 (6) 0.0055 (6) 0.0014 (6)
C8 0.0221 (7) 0.0290 (9) 0.0248 (8) 0.0012 (6) −0.0003 (6) −0.0002 (6)
C10 0.0274 (8) 0.0287 (9) 0.0219 (7) 0.0019 (6) 0.0021 (6) −0.0055 (6)
C3 0.0218 (7) 0.0248 (9) 0.0240 (7) −0.0029 (6) 0.0063 (6) −0.0028 (6)
C11 0.0287 (8) 0.0343 (10) 0.0262 (8) 0.0010 (7) 0.0037 (6) 0.0010 (7)
C12 0.0331 (9) 0.0436 (11) 0.0274 (8) 0.0083 (7) 0.0000 (6) 0.0055 (7)
C15 0.0346 (9) 0.0338 (10) 0.0327 (9) −0.0009 (7) 0.0000 (7) 0.0047 (7)
C14 0.0325 (9) 0.0385 (11) 0.0437 (10) −0.0077 (8) 0.0028 (7) 0.0013 (8)
C9 0.0261 (8) 0.0323 (9) 0.0230 (7) 0.0035 (7) 0.0014 (6) −0.0014 (6)
C13 0.0252 (8) 0.0460 (11) 0.0348 (9) −0.0001 (7) −0.0029 (6) −0.0049 (8)

Geometric parameters (Å, °)

O1—C7 1.2138 (19) C8—H8a 0.990
O2—C1 1.2182 (18) C10—C11 1.387 (2)
N1—C1 1.395 (2) C10—C15 1.387 (2)
N1—C7 1.398 (2) C10—C9 1.513 (2)
N1—C8 1.4749 (18) C3—H3 0.950
C5—C4 1.414 (2) C11—C12 1.388 (2)
C5—C7 1.492 (2) C11—H11 0.950
C5—C6 1.377 (2) C12—C13 1.380 (2)
C4—C4i 1.4131 (19) C12—H12 0.950
C4—C2 1.408 (2) C15—C14 1.385 (2)
C1—C2 1.4849 (19) C15—H15 0.950
C2—C3 1.377 (2) C14—C13 1.383 (2)
C6—C3i 1.405 (2) C14—H14 0.950
C6—H6 0.950 C9—H9b 0.990
C8—C9 1.526 (2) C9—H9a 0.990
C8—H8b 0.990 C13—H13 0.950
O1···O2ii 3.3754 (15) C7···C1ii 3.509 (2)
O1···N1ii 3.5905 (17) C7···C2ii 3.433 (2)
O1···C1ii 3.1573 (19) C7···C3ii 3.438 (2)
O1···C2ii 3.3654 (18) C2···O1iii 3.3654 (18)
O2···O1iii 3.3754 (15) C2···O2iv 3.3145 (19)
O2···O2iv 3.4962 (14) C2···C5iii 3.563 (2)
O2···N1iii 3.5401 (17) C2···C7iii 3.433 (2)
O2···C1iv 3.3222 (18) C6···C5vi 3.467 (2)
O2···C7iii 3.5251 (19) C6···C4ii 3.581 (2)
O2···C2iv 3.3145 (19) C6···C4vi 3.498 (2)
O2···C8iii 3.396 (2) C6···C6vi 3.520 (2)
O2···C3v 3.1941 (19) C6···C3ii 3.600 (2)
O2···C3iv 3.4719 (19) C8···O2ii 3.396 (2)
N1···O1iii 3.5905 (17) C8···C3iv 3.469 (2)
N1···O2ii 3.5401 (17) C3···O2v 3.1941 (19)
C5···C2ii 3.563 (2) C3···O2iv 3.4719 (19)
C5···C6vi 3.467 (2) C3···C5iii 3.261 (2)
C5···C3ii 3.261 (2) C3···C4iii 3.578 (2)
C4···C6iii 3.581 (2) C3···C7iii 3.438 (2)
C4···C6vi 3.498 (2) C3···C6iii 3.600 (2)
C4···C3ii 3.578 (2) C3···C8iv 3.469 (2)
C1···O1iii 3.1573 (19) C11···C15ii 3.581 (2)
C1···O2iv 3.3222 (18) C12···C14ii 3.586 (2)
C1···C1iv 3.580 (2) C15···C11iii 3.581 (2)
C1···C7iii 3.509 (2) C14···C12iii 3.586 (2)
C7···O2ii 3.5251 (19)
C1—N1—C7 125.52 (11) C11—C10—C15 118.49 (14)
C1—N1—C8 116.63 (12) C11—C10—C9 121.22 (14)
C7—N1—C8 117.85 (12) C15—C10—C9 120.19 (14)
C4—C5—C7 119.79 (13) C2—C3—C6i 120.32 (14)
C4—C5—C6 120.19 (13) C2—C3—H3 119.8
C7—C5—C6 119.96 (14) C6i—C3—H3 119.8
C5—C4—C4i 119.41 (13) C10—C11—C12 120.30 (16)
C5—C4—C2 121.31 (12) C10—C11—H11 119.8
C4i—C4—C2 119.28 (13) C12—C11—H11 119.9
O2—C1—N1 120.75 (12) C11—C12—C13 120.66 (16)
O2—C1—C2 122.22 (14) C11—C12—H12 119.7
N1—C1—C2 117.03 (12) C13—C12—H12 119.7
O1—C7—N1 121.08 (13) C10—C15—C14 121.36 (16)
O1—C7—C5 122.44 (14) C10—C15—H15 119.3
N1—C7—C5 116.48 (13) C14—C15—H15 119.3
C4—C2—C1 119.75 (13) C15—C14—C13 119.69 (17)
C4—C2—C3 120.46 (13) C15—C14—H14 120.2
C1—C2—C3 119.79 (13) C13—C14—H14 120.2
C5—C6—C3i 120.34 (14) C8—C9—C10 108.83 (13)
C5—C6—H6 119.8 C8—C9—H9b 109.9
C3i—C6—H6 119.8 C8—C9—H9a 109.9
N1—C8—C9 113.32 (13) C10—C9—H9b 109.9
N1—C8—H8b 108.9 C10—C9—H9a 109.9
N1—C8—H8a 108.9 H9b—C9—H9a 108.3
C9—C8—H8b 108.9 C12—C13—C14 119.50 (15)
C9—C8—H8a 108.9 C12—C13—H13 120.3
H8b—C8—H8a 107.7 C14—C13—H13 120.3
C1—N1—C7—O1 179.62 (14) C5—C4—C2—C3 −179.92 (15)
C1—N1—C7—C5 −1.5 (2) C4i—C4—C2—C1 179.44 (14)
C7—N1—C1—O2 −177.03 (14) C4i—C4—C2—C3 0.2 (2)
C7—N1—C1—C2 3.7 (2) C2—C4—C4i—C5i −0.1 (2)
C1—N1—C8—C9 −90.00 (16) O2—C1—C2—C4 178.20 (14)
C8—N1—C1—O2 2.6 (2) O2—C1—C2—C3 −2.5 (2)
C8—N1—C1—C2 −176.64 (13) N1—C1—C2—C4 −2.5 (2)
C7—N1—C8—C9 89.70 (17) N1—C1—C2—C3 176.75 (14)
C8—N1—C7—O1 −0.05 (19) C4—C2—C3—C6i −0.1 (2)
C8—N1—C7—C5 178.80 (13) C1—C2—C3—C6i −179.37 (14)
C4—C5—C7—O1 176.99 (15) C5—C6—C3i—C2i 0.1 (2)
C4—C5—C7—N1 −1.8 (2) N1—C8—C9—C10 166.24 (13)
C7—C5—C4—C2 2.9 (2) C11—C10—C15—C14 −0.5 (2)
C7—C5—C4—C4i −177.23 (14) C15—C10—C11—C12 0.2 (2)
C4—C5—C6—C3i −0.1 (2) C11—C10—C9—C8 97.43 (17)
C6—C5—C4—C2 −179.84 (15) C9—C10—C11—C12 −176.13 (16)
C6—C5—C4—C4i 0.1 (2) C15—C10—C9—C8 −78.79 (19)
C7—C5—C6—C3i 177.15 (14) C9—C10—C15—C14 175.83 (16)
C6—C5—C7—O1 −0.3 (2) C10—C11—C12—C13 0.3 (2)
C6—C5—C7—N1 −179.15 (14) C11—C12—C13—C14 −0.4 (2)
C5—C4—C4i—C2i 0.1 (2) C10—C15—C14—C13 0.4 (2)
C5—C4—C2—C1 −0.6 (2) C15—C14—C13—C12 0.1 (2)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x+1, −y, −z+1; (v) −x+1, −y−1, −z+1; (vi) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2244).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Hädicke, E. & Graser, F. (1986). Acta Cryst. C42, 189–195.
  4. Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, pp. 473–487. Weinheim: VCH.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Hino, K. & Mizuguchi, J. (2005). Acta Cryst. E61, o672–o674.
  7. Mizuguchi, J. (1981). Krist. Tech.16, 695–700.
  8. Mizuguchi, J. (1998a). Acta Cryst. C54, 1479–1481.
  9. Mizuguchi, J. (1998b). J. Appl. Phys.84, 4479–4486.
  10. Mizuguchi, J. (2003a). Z. Krist. New Cryst. Struct.218, 137-138.
  11. Mizuguchi, J. (2003b). Z. Krist. New Cryst. Struct. 218, 139-140.
  12. Mizuguchi, J. (2004). J. Phys. Chem. B, 108, 8926-8930.
  13. Mizuguchi, J. (2005a). Acta Cryst. E61, o1064–o1065.
  14. Mizuguchi, J. (2005b). Acta Cryst. E61, o1066–o1067.
  15. Mizuguchi, J. & Hino, K. (2005). Acta Cryst. E61, o669–o671.
  16. Mizuguchi, J., Hino, K. & Tojo, K. (2006). Dyes Pigm 70, 126-135.
  17. Mizuguchi, J., Makino, T., Imura, Y., Takahashi, H. & Suzuki, S. (2005). Acta Cryst. E61, o3044–o3046.
  18. Mizuguchi, J. & Shimo, N. (2006). J. Imag. Sci. Tech.50, 115–121.
  19. Mizuguchi, J. & Tojo, K. (2002). Z. Krist. New Cryst. Struct.217, 247-248.
  20. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  21. Rigaku/MSC (2006). CrystalStructure (Version 3.8). Rigaku/MSC, The Woodlands, Texas, USA.
  22. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
  23. Tsukada, Y., Hirao, K. & Mizuguchi, J. (2007). Acta Cryst. E63, o3872.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807060333/is2244sup1.cif

e-64-000o5-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060333/is2244Isup2.hkl

e-64-000o5-Isup2.hkl (98.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES