Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):m64–m65. doi: 10.1107/S1600536807063003

Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]nickel(II) tetra­hydrate

Kai Zhao a,b, Xian-Hong Yin a,*, Yu Feng a, Jie Zhu b, Cui-Wu Lin b
PMCID: PMC2914946  PMID: 21200635

Abstract

In the title complex, [Ni(C11H9ClN3O2)2]·4H2O, the Ni atom is coordinated by four N atoms and two O atoms derived from two tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The cis-N4O2 donor set defines a distorted octa­hedral geometry. In the crystal structure, the complex and water mol­ecules are linked by O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Yin et al. (2007); Zhao et al. (2007).graphic file with name e-64-00m64-scheme1.jpg

Experimental

Crystal data

  • [Ni(C11H9ClN3O2)2]·4H2O

  • M r = 632.10

  • Triclinic, Inline graphic

  • a = 9.5907 (10) Å

  • b = 11.2776 (17) Å

  • c = 14.2659 (19) Å

  • α = 92.593 (2)°

  • β = 105.206 (3)°

  • γ = 113.820 (3)°

  • V = 1342.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 298 (2) K

  • 0.52 × 0.49 × 0.37 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.630, T max = 0.713

  • 6957 measured reflections

  • 4644 independent reflections

  • 3549 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.107

  • S = 1.01

  • 4644 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a ); molecular graphics: SHELXTL (Sheldrick, 1997b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063003/tk2215sup1.cif

e-64-00m64-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063003/tk2215Isup2.hkl

e-64-00m64-Isup2.hkl (227.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—N4 1.998 (2)
Ni1—N1 2.000 (2)
Ni1—O1 2.069 (2)
Ni1—O3 2.079 (2)
Ni1—N3 2.096 (3)
Ni1—N6 2.112 (3)
N4—Ni1—N1 178.42 (10)
N4—Ni1—O1 101.86 (9)
N1—Ni1—O1 78.75 (9)
N4—Ni1—O3 78.49 (9)
N1—Ni1—O3 100.08 (9)
O1—Ni1—O3 90.29 (10)
N4—Ni1—N3 102.51 (10)
N1—Ni1—N3 76.82 (9)
O1—Ni1—N3 155.49 (9)
O3—Ni1—N3 92.01 (10)
N4—Ni1—N6 76.94 (10)
N1—Ni1—N6 104.50 (10)
O1—Ni1—N6 93.55 (10)
O3—Ni1—N6 155.40 (9)
N3—Ni1—N6 94.43 (10)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.85 1.96 2.800 (4) 170
O5—H5B⋯O6i 0.85 1.95 2.790 (4) 170
O6—H6A⋯O2ii 0.85 2.21 3.063 (5) 176
O6—H6B⋯O7iii 0.85 1.84 2.693 (4) 176
O7—H7D⋯O4iv 0.85 2.13 2.942 (4) 161
O7—H7E⋯O2v 0.85 1.94 2.758 (4) 160
O8—H8A⋯O5vi 0.85 1.95 2.802 (5) 179
O8—H8B⋯O5vii 0.85 2.09 2.939 (5) 178

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was sponsored by the Fund of the Talent Highland Research Programme of Guangxi University (grant No. 205121), the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012 and 0509ZD047).

supplementary crystallographic information

Comment

Recently we reported the crystal structures of bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]zinc(II) trihydrate (Yin et al., 2007) and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5- hydrate (Zhao et al., 2007). As a continuation of these investigations, the crystal structure of the title complex, (I), is described.

In (I), Fig. 1, the Ni atom is six-coordinated by four N atoms and two O atoms derived from two uninegative tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The resultant cis-N4O2 donor set defines an approximate octahedral geometry with the range of the angles around Ni(II) center being 76.82 (9) to 178.42 (10)°. A complex network of O—H···O hydrogen bonds involving the ligand-O and water molecules of crystallization consolidate the crystal structure (Table 1).

Experimental

6-(3,5-Dimethyl-1H-pyrazol-1-yl)picolinic acid (1 mmol, 250 mg) was dissolved in anhydrous alcohol (15 ml) and stirred until a clear solution resulted. A solution of NiCl2.6H2O (0.5 mmol, 113 mg) in anhydrous alcohol (10 ml) was then added. After keeping the resulting solution in air to evaporate about half of the volume, blue prisms of (I) formed. The crystals were isolated, washed with ethanol three times and dried in a vacuum desiccator using silica gel as the dessicant; yield 75%. Elemental analysis: Found: C 41.70, H 4.25, N 13.20, O 20.35%. C22H26NiN6O8 requires: C 41.80, H 4.15, N 13.30, O 20.25%.

Refinement

C-bound H atoms were included in the riding model approximation with C—H = 0.93 to 0.96 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The water H atoms were located in a difference Fourier map and the O—H distances were constrained to 0.85 Å, and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Crystal data

[Ni(C11H9ClN3O2)2]·4H2O Z = 2
Mr = 632.10 F000 = 652
Triclinic, P1 Dx = 1.564 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.5907 (10) Å Cell parameters from 3154 reflections
b = 11.2776 (17) Å θ = 2.4–27.3º
c = 14.2659 (19) Å µ = 0.98 mm1
α = 92.593 (2)º T = 298 (2) K
β = 105.206 (3)º Prism, blue
γ = 113.820 (3)º 0.52 × 0.49 × 0.37 mm
V = 1342.0 (3) Å3

Data collection

Siemens SMART CCD area-detector diffractometer 4644 independent reflections
Radiation source: fine-focus sealed tube 3549 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.022
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −11→10
Tmin = 0.630, Tmax = 0.713 k = −13→13
6957 measured reflections l = −13→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.107   w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1899P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4644 reflections Δρmax = 0.40 e Å3
356 parameters Δρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.77264 (5) 0.52387 (4) 0.75140 (3) 0.03203 (14)
Cl1 0.55546 (12) 0.91209 (9) 0.67524 (7) 0.0551 (3)
Cl2 0.57607 (13) 0.07074 (9) 0.92174 (8) 0.0640 (3)
N1 0.7176 (3) 0.6405 (2) 0.66193 (16) 0.0292 (5)
N2 0.7517 (3) 0.5219 (2) 0.54309 (17) 0.0337 (6)
N3 0.7717 (3) 0.4465 (2) 0.61479 (18) 0.0363 (6)
N4 0.8219 (3) 0.4031 (2) 0.83869 (17) 0.0313 (6)
N5 1.0849 (3) 0.5382 (2) 0.86026 (17) 0.0326 (6)
N6 1.0248 (3) 0.6181 (2) 0.80948 (18) 0.0337 (6)
O1 0.7411 (3) 0.6477 (2) 0.84674 (15) 0.0448 (6)
O2 0.6899 (3) 0.8231 (3) 0.85594 (17) 0.0582 (7)
O3 0.5445 (3) 0.3791 (2) 0.73513 (17) 0.0479 (6)
O4 0.4125 (3) 0.2055 (3) 0.7966 (2) 0.0870 (10)
O5 0.1053 (4) 0.1080 (3) 0.6606 (2) 0.0812 (9)
H5A 0.2027 0.1390 0.6960 0.097*
H5B 0.0472 0.0878 0.6985 0.097*
O6 0.9476 (4) 0.0534 (4) 0.8033 (2) 0.0994 (11)
H6A 0.8799 −0.0101 0.8208 0.119*
H6B 1.0368 0.0837 0.8488 0.119*
O7 0.7637 (4) 0.8418 (4) 0.0580 (2) 0.1187 (15)
H7D 0.6933 0.8234 0.0877 0.142*
H7E 0.7179 0.8303 −0.0036 0.142*
O8 0.0584 (6) 0.8775 (5) 0.5293 (3) 0.159 (2)
H8A 0.0092 0.8812 0.4713 0.191*
H8B 0.0733 0.9439 0.5682 0.191*
C1 0.7039 (4) 0.7344 (3) 0.8106 (2) 0.0371 (7)
C2 0.6770 (3) 0.7295 (3) 0.6994 (2) 0.0302 (7)
C3 0.6215 (4) 0.8021 (3) 0.6372 (2) 0.0359 (7)
C4 0.6125 (4) 0.7840 (3) 0.5382 (2) 0.0439 (8)
H4 0.5775 0.8340 0.4964 0.053*
C5 0.6548 (4) 0.6931 (3) 0.5015 (2) 0.0426 (8)
H5 0.6478 0.6797 0.4353 0.051*
C6 0.7084 (3) 0.6222 (3) 0.5670 (2) 0.0296 (6)
C7 0.7597 (5) 0.5369 (4) 0.3668 (2) 0.0557 (10)
H7A 0.7964 0.4988 0.3225 0.083*
H7B 0.8259 0.6300 0.3843 0.083*
H7C 0.6508 0.5212 0.3351 0.083*
C8 0.7691 (4) 0.4755 (3) 0.4583 (2) 0.0394 (8)
C9 0.7988 (4) 0.3697 (3) 0.4775 (2) 0.0455 (8)
H9 0.8166 0.3174 0.4341 0.055*
C10 0.7979 (4) 0.3533 (3) 0.5734 (2) 0.0396 (8)
C11 0.8165 (5) 0.2478 (4) 0.6281 (3) 0.0616 (11)
H11A 0.9201 0.2833 0.6768 0.092*
H11B 0.8063 0.1771 0.5827 0.092*
H11C 0.7350 0.2153 0.6600 0.092*
C12 0.5349 (4) 0.2929 (4) 0.7887 (2) 0.0465 (9)
C13 0.6969 (4) 0.2984 (3) 0.8487 (2) 0.0364 (7)
C14 0.7263 (4) 0.2110 (3) 0.9064 (2) 0.0399 (8)
C15 0.8827 (4) 0.2345 (3) 0.9545 (2) 0.0451 (9)
H15 0.9027 0.1769 0.9947 0.054*
C16 1.0094 (4) 0.3425 (3) 0.9436 (2) 0.0412 (8)
H16 1.1150 0.3592 0.9755 0.049*
C17 0.9719 (4) 0.4250 (3) 0.8826 (2) 0.0309 (7)
C18 1.3525 (4) 0.5291 (4) 0.9329 (3) 0.0599 (11)
H18A 1.4596 0.5778 0.9307 0.090*
H18B 1.3108 0.4403 0.8998 0.090*
H18C 1.3534 0.5288 1.0004 0.090*
C19 1.2490 (4) 0.5920 (3) 0.8830 (2) 0.0378 (7)
C20 1.2925 (4) 0.7063 (3) 0.8466 (2) 0.0428 (8)
H20 1.3962 0.7644 0.8502 0.051*
C21 1.1525 (4) 0.7206 (3) 0.8024 (2) 0.0362 (7)
C22 1.1358 (4) 0.8304 (3) 0.7544 (3) 0.0535 (9)
H22A 1.0583 0.7956 0.6901 0.080*
H22B 1.2373 0.8890 0.7483 0.080*
H22C 1.1010 0.8774 0.7937 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0331 (2) 0.0372 (2) 0.0302 (2) 0.01843 (18) 0.00948 (17) 0.01627 (17)
Cl1 0.0667 (6) 0.0481 (6) 0.0634 (6) 0.0382 (5) 0.0177 (5) 0.0138 (4)
Cl2 0.0823 (8) 0.0401 (5) 0.0683 (6) 0.0134 (5) 0.0392 (6) 0.0272 (5)
N1 0.0298 (14) 0.0313 (14) 0.0260 (13) 0.0131 (12) 0.0074 (11) 0.0094 (11)
N2 0.0381 (15) 0.0348 (15) 0.0293 (13) 0.0165 (12) 0.0100 (11) 0.0091 (11)
N3 0.0433 (16) 0.0348 (15) 0.0369 (14) 0.0211 (13) 0.0131 (12) 0.0159 (12)
N4 0.0318 (14) 0.0329 (14) 0.0292 (13) 0.0131 (12) 0.0094 (11) 0.0128 (11)
N5 0.0324 (15) 0.0336 (15) 0.0329 (13) 0.0172 (12) 0.0059 (11) 0.0118 (11)
N6 0.0357 (15) 0.0307 (14) 0.0368 (14) 0.0161 (12) 0.0098 (12) 0.0149 (11)
O1 0.0596 (15) 0.0607 (16) 0.0280 (11) 0.0382 (13) 0.0141 (11) 0.0165 (11)
O2 0.084 (2) 0.0719 (18) 0.0388 (13) 0.0514 (16) 0.0211 (13) 0.0079 (13)
O3 0.0323 (13) 0.0596 (16) 0.0479 (14) 0.0162 (11) 0.0093 (11) 0.0251 (12)
O4 0.0405 (17) 0.102 (2) 0.096 (2) 0.0064 (16) 0.0172 (16) 0.059 (2)
O5 0.071 (2) 0.100 (2) 0.0615 (18) 0.0352 (18) 0.0067 (15) 0.0182 (17)
O6 0.066 (2) 0.123 (3) 0.076 (2) 0.017 (2) 0.0131 (17) −0.008 (2)
O7 0.072 (2) 0.231 (5) 0.0458 (17) 0.063 (3) 0.0129 (16) 0.011 (2)
O8 0.271 (6) 0.195 (5) 0.079 (3) 0.178 (5) 0.034 (3) 0.025 (3)
C1 0.0340 (18) 0.048 (2) 0.0336 (17) 0.0217 (16) 0.0099 (14) 0.0101 (15)
C2 0.0284 (16) 0.0295 (17) 0.0323 (16) 0.0123 (13) 0.0084 (13) 0.0090 (13)
C3 0.0350 (18) 0.0303 (17) 0.0409 (18) 0.0146 (14) 0.0078 (14) 0.0112 (14)
C4 0.056 (2) 0.044 (2) 0.0390 (19) 0.0291 (18) 0.0120 (16) 0.0215 (16)
C5 0.054 (2) 0.048 (2) 0.0292 (17) 0.0240 (18) 0.0123 (15) 0.0163 (15)
C6 0.0300 (16) 0.0290 (16) 0.0281 (15) 0.0112 (13) 0.0083 (13) 0.0079 (13)
C7 0.076 (3) 0.064 (3) 0.0370 (19) 0.034 (2) 0.0263 (19) 0.0120 (18)
C8 0.0387 (19) 0.043 (2) 0.0336 (17) 0.0129 (16) 0.0137 (14) 0.0040 (15)
C9 0.050 (2) 0.042 (2) 0.046 (2) 0.0204 (17) 0.0167 (17) −0.0007 (16)
C10 0.0408 (19) 0.0324 (18) 0.049 (2) 0.0167 (15) 0.0165 (16) 0.0089 (15)
C11 0.082 (3) 0.049 (2) 0.076 (3) 0.042 (2) 0.035 (2) 0.024 (2)
C12 0.036 (2) 0.052 (2) 0.0426 (19) 0.0090 (17) 0.0119 (16) 0.0176 (17)
C13 0.0414 (19) 0.0356 (18) 0.0294 (16) 0.0116 (15) 0.0136 (14) 0.0103 (14)
C14 0.059 (2) 0.0297 (18) 0.0356 (17) 0.0173 (16) 0.0230 (16) 0.0147 (14)
C15 0.070 (3) 0.042 (2) 0.0381 (18) 0.0340 (19) 0.0213 (18) 0.0220 (16)
C16 0.048 (2) 0.046 (2) 0.0369 (18) 0.0271 (17) 0.0100 (16) 0.0183 (16)
C17 0.0360 (18) 0.0318 (17) 0.0272 (15) 0.0164 (14) 0.0097 (13) 0.0090 (13)
C18 0.043 (2) 0.070 (3) 0.074 (3) 0.035 (2) 0.010 (2) 0.027 (2)
C19 0.0325 (18) 0.044 (2) 0.0378 (17) 0.0200 (15) 0.0061 (14) 0.0047 (15)
C20 0.0312 (18) 0.043 (2) 0.049 (2) 0.0114 (16) 0.0111 (15) 0.0026 (16)
C21 0.0370 (18) 0.0296 (17) 0.0387 (17) 0.0104 (14) 0.0126 (14) 0.0068 (14)
C22 0.052 (2) 0.042 (2) 0.069 (3) 0.0179 (18) 0.022 (2) 0.0237 (19)

Geometric parameters (Å, °)

Ni1—N4 1.998 (2) C3—C4 1.393 (4)
Ni1—N1 2.000 (2) C4—C5 1.374 (4)
Ni1—O1 2.069 (2) C4—H4 0.9300
Ni1—O3 2.079 (2) C5—C6 1.387 (4)
Ni1—N3 2.096 (3) C5—H5 0.9300
Ni1—N6 2.112 (3) C7—C8 1.505 (5)
Cl1—C3 1.729 (3) C7—H7A 0.9600
Cl2—C14 1.726 (3) C7—H7B 0.9600
N1—C6 1.335 (4) C7—H7C 0.9600
N1—C2 1.349 (4) C8—C9 1.358 (5)
N2—C8 1.372 (4) C9—C10 1.390 (5)
N2—N3 1.384 (3) C9—H9 0.9300
N2—C6 1.409 (4) C10—C11 1.497 (4)
N3—C10 1.323 (4) C11—H11A 0.9600
N4—C17 1.323 (4) C11—H11B 0.9600
N4—C13 1.347 (4) C11—H11C 0.9600
N5—C19 1.377 (4) C12—C13 1.539 (4)
N5—N6 1.389 (3) C13—C14 1.381 (4)
N5—C17 1.416 (4) C14—C15 1.383 (5)
N6—C21 1.333 (4) C15—C16 1.380 (5)
O1—C1 1.256 (4) C15—H15 0.9300
O2—C1 1.238 (4) C16—C17 1.389 (4)
O3—C12 1.253 (4) C16—H16 0.9300
O4—C12 1.228 (4) C18—C19 1.496 (4)
O5—H5A 0.8500 C18—H18A 0.9600
O5—H5B 0.8500 C18—H18B 0.9600
O6—H6A 0.8499 C18—H18C 0.9600
O6—H6B 0.8500 C19—C20 1.359 (5)
O7—H7D 0.8500 C20—C21 1.402 (4)
O7—H7E 0.8499 C20—H20 0.9300
O8—H8A 0.8500 C21—C22 1.486 (4)
O8—H8B 0.8500 C22—H22A 0.9600
C1—C2 1.535 (4) C22—H22B 0.9600
C2—C3 1.382 (4) C22—H22C 0.9600
N4—Ni1—N1 178.42 (10) H7A—C7—H7B 109.5
N4—Ni1—O1 101.86 (9) C8—C7—H7C 109.5
N1—Ni1—O1 78.75 (9) H7A—C7—H7C 109.5
N4—Ni1—O3 78.49 (9) H7B—C7—H7C 109.5
N1—Ni1—O3 100.08 (9) C9—C8—N2 105.6 (3)
O1—Ni1—O3 90.29 (10) C9—C8—C7 129.8 (3)
N4—Ni1—N3 102.51 (10) N2—C8—C7 124.6 (3)
N1—Ni1—N3 76.82 (9) C8—C9—C10 108.0 (3)
O1—Ni1—N3 155.49 (9) C8—C9—H9 126.0
O3—Ni1—N3 92.01 (10) C10—C9—H9 126.0
N4—Ni1—N6 76.94 (10) N3—C10—C9 110.1 (3)
N1—Ni1—N6 104.50 (10) N3—C10—C11 120.7 (3)
O1—Ni1—N6 93.55 (10) C9—C10—C11 129.2 (3)
O3—Ni1—N6 155.40 (9) C10—C11—H11A 109.5
N3—Ni1—N6 94.43 (10) C10—C11—H11B 109.5
C6—N1—C2 121.9 (2) H11A—C11—H11B 109.5
C6—N1—Ni1 120.58 (19) C10—C11—H11C 109.5
C2—N1—Ni1 117.24 (18) H11A—C11—H11C 109.5
C8—N2—N3 110.6 (2) H11B—C11—H11C 109.5
C8—N2—C6 132.8 (3) O4—C12—O3 127.2 (3)
N3—N2—C6 116.5 (2) O4—C12—C13 118.0 (3)
C10—N3—N2 105.6 (2) O3—C12—C13 114.8 (3)
C10—N3—Ni1 141.3 (2) N4—C13—C14 118.9 (3)
N2—N3—Ni1 112.77 (17) N4—C13—C12 112.3 (3)
C17—N4—C13 122.1 (3) C14—C13—C12 128.7 (3)
C17—N4—Ni1 120.6 (2) C13—C14—C15 119.4 (3)
C13—N4—Ni1 117.3 (2) C13—C14—Cl2 123.2 (3)
C19—N5—N6 110.6 (2) C15—C14—Cl2 117.4 (2)
C19—N5—C17 133.0 (2) C16—C15—C14 120.8 (3)
N6—N5—C17 116.4 (2) C16—C15—H15 119.6
C21—N6—N5 105.4 (2) C14—C15—H15 119.6
C21—N6—Ni1 141.8 (2) C15—C16—C17 116.9 (3)
N5—N6—Ni1 111.64 (18) C15—C16—H16 121.5
C1—O1—Ni1 116.31 (19) C17—C16—H16 121.5
C12—O3—Ni1 116.7 (2) N4—C17—C16 121.8 (3)
H5A—O5—H5B 108.1 N4—C17—N5 113.0 (2)
H6A—O6—H6B 108.5 C16—C17—N5 125.2 (3)
H7D—O7—H7E 108.8 C19—C18—H18A 109.5
H8A—O8—H8B 108.4 C19—C18—H18B 109.5
O2—C1—O1 126.6 (3) H18A—C18—H18B 109.5
O2—C1—C2 117.7 (3) C19—C18—H18C 109.5
O1—C1—C2 115.7 (3) H18A—C18—H18C 109.5
N1—C2—C3 119.0 (3) H18B—C18—H18C 109.5
N1—C2—C1 111.5 (2) C20—C19—N5 106.2 (3)
C3—C2—C1 129.4 (3) C20—C19—C18 128.6 (3)
C2—C3—C4 119.3 (3) N5—C19—C18 125.1 (3)
C2—C3—Cl1 123.1 (2) C19—C20—C21 107.5 (3)
C4—C3—Cl1 117.5 (2) C19—C20—H20 126.2
C5—C4—C3 120.8 (3) C21—C20—H20 126.2
C5—C4—H4 119.6 N6—C21—C20 110.3 (3)
C3—C4—H4 119.6 N6—C21—C22 121.1 (3)
C4—C5—C6 117.4 (3) C20—C21—C22 128.6 (3)
C4—C5—H5 121.3 C21—C22—H22A 109.5
C6—C5—H5 121.3 C21—C22—H22B 109.5
N1—C6—C5 121.5 (3) H22A—C22—H22B 109.5
N1—C6—N2 112.5 (2) C21—C22—H22C 109.5
C5—C6—N2 126.0 (3) H22A—C22—H22C 109.5
C8—C7—H7A 109.5 H22B—C22—H22C 109.5
C8—C7—H7B 109.5
O1—Ni1—N1—C6 −179.1 (2) N1—C2—C3—Cl1 176.3 (2)
O3—Ni1—N1—C6 −90.8 (2) C1—C2—C3—Cl1 −4.7 (5)
N3—Ni1—N1—C6 −1.1 (2) C2—C3—C4—C5 1.4 (5)
N6—Ni1—N1—C6 90.1 (2) Cl1—C3—C4—C5 −176.5 (3)
O1—Ni1—N1—C2 −4.8 (2) C3—C4—C5—C6 −0.8 (5)
O3—Ni1—N1—C2 83.5 (2) C2—N1—C6—C5 −0.7 (4)
N3—Ni1—N1—C2 173.2 (2) Ni1—N1—C6—C5 173.4 (2)
N6—Ni1—N1—C2 −95.6 (2) C2—N1—C6—N2 −178.1 (3)
C8—N2—N3—C10 −1.2 (3) Ni1—N1—C6—N2 −4.1 (3)
C6—N2—N3—C10 174.8 (3) C4—C5—C6—N1 0.5 (5)
C8—N2—N3—Ni1 173.52 (19) C4—C5—C6—N2 177.6 (3)
C6—N2—N3—Ni1 −10.5 (3) C8—N2—C6—N1 −175.5 (3)
N4—Ni1—N3—C10 −3.4 (4) N3—N2—C6—N1 9.6 (4)
N1—Ni1—N3—C10 178.0 (4) C8—N2—C6—C5 7.2 (5)
O1—Ni1—N3—C10 −177.2 (3) N3—N2—C6—C5 −167.7 (3)
O3—Ni1—N3—C10 −82.1 (4) N3—N2—C8—C9 0.5 (3)
N6—Ni1—N3—C10 74.1 (4) C6—N2—C8—C9 −174.6 (3)
N4—Ni1—N3—N2 −175.31 (19) N3—N2—C8—C7 −178.1 (3)
N1—Ni1—N3—N2 6.15 (19) C6—N2—C8—C7 6.8 (5)
O1—Ni1—N3—N2 10.9 (4) N2—C8—C9—C10 0.4 (4)
O3—Ni1—N3—N2 106.0 (2) C7—C8—C9—C10 178.9 (3)
N6—Ni1—N3—N2 −97.7 (2) N2—N3—C10—C9 1.4 (4)
O1—Ni1—N4—C17 −96.3 (2) Ni1—N3—C10—C9 −170.8 (3)
O3—Ni1—N4—C17 175.9 (2) N2—N3—C10—C11 −176.7 (3)
N3—Ni1—N4—C17 86.3 (2) Ni1—N3—C10—C11 11.1 (6)
N6—Ni1—N4—C17 −5.4 (2) C8—C9—C10—N3 −1.2 (4)
O1—Ni1—N4—C13 85.2 (2) C8—C9—C10—C11 176.7 (4)
O3—Ni1—N4—C13 −2.7 (2) Ni1—O3—C12—O4 173.8 (3)
N3—Ni1—N4—C13 −92.2 (2) Ni1—O3—C12—C13 −7.6 (4)
N6—Ni1—N4—C13 176.1 (2) C17—N4—C13—C14 −0.1 (4)
C19—N5—N6—C21 −0.6 (3) Ni1—N4—C13—C14 178.4 (2)
C17—N5—N6—C21 176.3 (2) C17—N4—C13—C12 −178.7 (3)
C19—N5—N6—Ni1 169.89 (19) Ni1—N4—C13—C12 −0.2 (3)
C17—N5—N6—Ni1 −13.2 (3) O4—C12—C13—N4 −176.0 (3)
N4—Ni1—N6—C21 174.8 (4) O3—C12—C13—N4 5.2 (4)
N1—Ni1—N6—C21 −4.6 (4) O4—C12—C13—C14 5.6 (6)
O1—Ni1—N6—C21 −83.9 (3) O3—C12—C13—C14 −173.2 (3)
O3—Ni1—N6—C21 177.6 (3) N4—C13—C14—C15 1.6 (4)
N3—Ni1—N6—C21 72.9 (3) C12—C13—C14—C15 179.9 (3)
N4—Ni1—N6—N5 9.66 (17) N4—C13—C14—Cl2 −178.0 (2)
N1—Ni1—N6—N5 −169.68 (17) C12—C13—C14—Cl2 0.3 (5)
O1—Ni1—N6—N5 111.03 (18) C13—C14—C15—C16 −1.6 (5)
O3—Ni1—N6—N5 12.5 (3) Cl2—C14—C15—C16 178.1 (2)
N3—Ni1—N6—N5 −92.17 (18) C14—C15—C16—C17 0.0 (5)
N4—Ni1—O1—C1 −178.3 (2) C13—N4—C17—C16 −1.5 (4)
N1—Ni1—O1—C1 0.2 (2) Ni1—N4—C17—C16 −179.9 (2)
O3—Ni1—O1—C1 −100.0 (2) C13—N4—C17—N5 178.3 (2)
N3—Ni1—O1—C1 −4.5 (4) Ni1—N4—C17—N5 −0.2 (3)
N6—Ni1—O1—C1 104.3 (2) C15—C16—C17—N4 1.5 (5)
N4—Ni1—O3—C12 5.9 (2) C15—C16—C17—N5 −178.3 (3)
N1—Ni1—O3—C12 −174.7 (2) C19—N5—C17—N4 −174.7 (3)
O1—Ni1—O3—C12 −96.1 (3) N6—N5—C17—N4 9.2 (4)
N3—Ni1—O3—C12 108.3 (3) C19—N5—C17—C16 5.0 (5)
N6—Ni1—O3—C12 3.1 (4) N6—N5—C17—C16 −171.0 (3)
Ni1—O1—C1—O2 −174.9 (3) N6—N5—C19—C20 0.1 (3)
Ni1—O1—C1—C2 3.8 (4) C17—N5—C19—C20 −176.1 (3)
C6—N1—C2—C3 1.2 (4) N6—N5—C19—C18 −176.8 (3)
Ni1—N1—C2—C3 −173.1 (2) C17—N5—C19—C18 7.0 (5)
C6—N1—C2—C1 −178.0 (3) N5—C19—C20—C21 0.4 (4)
Ni1—N1—C2—C1 7.7 (3) C18—C19—C20—C21 177.1 (3)
O2—C1—C2—N1 171.3 (3) N5—N6—C21—C20 0.9 (3)
O1—C1—C2—N1 −7.5 (4) Ni1—N6—C21—C20 −164.8 (3)
O2—C1—C2—C3 −7.8 (5) N5—N6—C21—C22 −178.3 (3)
O1—C1—C2—C3 173.4 (3) Ni1—N6—C21—C22 16.1 (5)
N1—C2—C3—C4 −1.5 (5) C19—C20—C21—N6 −0.8 (4)
C1—C2—C3—C4 177.6 (3) C19—C20—C21—C22 178.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O4 0.85 1.96 2.800 (4) 170
O5—H5B···O6i 0.85 1.95 2.790 (4) 170
O6—H6A···O2ii 0.85 2.21 3.063 (5) 176
O6—H6B···O7iii 0.85 1.84 2.693 (4) 176
O7—H7D···O4iv 0.85 2.13 2.942 (4) 161
O7—H7E···O2v 0.85 1.94 2.758 (4) 160
O8—H8A···O5vi 0.85 1.95 2.802 (5) 179
O8—H8B···O5vii 0.85 2.09 2.939 (5) 178

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, y, z−1; (vi) −x, −y+1, −z+1; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2215).

References

  1. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  2. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  3. Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  5. Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.
  6. Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063003/tk2215sup1.cif

e-64-00m64-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063003/tk2215Isup2.hkl

e-64-00m64-Isup2.hkl (227.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES