Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):m69. doi: 10.1107/S1600536807062927

Dichlorido[1-(1-naphthyl­meth­yl)-3-(2-pyrid­yl)-1H-pyrazole-κ2 N 2,N 3]palladium(II)

Chun-Sen Liu a,b,*, Guang-Hui Sun a, Liang-Qi Guo a
PMCID: PMC2914949  PMID: 21200638

Abstract

In the title compound, [PdCl2(C19H15N3)], the PdII centre is four-coordinated by two N-atom donors from one 1-[3-(2-pyrid­yl)pyrazol-1-ylmeth­yl]naphthalene (L) ligand and by two Cl atoms in a distorted square-planar coordination geometry. In the crystal structure, adjacent PdII mononuclear units form inter­molecular C—H⋯π inter­actions involving the benzene and pyridine rings of different L ligands and π–π stacking inter­actions between the pyrazolyl-pyridine and naphthalene rings of neighbouring L ligands, with a centroid–centroid separation of 3.522 (1) Å.

Related literature

For related literature, see: Bell et al. (2003); Janiak (2000); Liu, Li et al. (2007); Liu, Zhang et al. (2007); Paul et al. (2004); Singh et al. (2003); Sony & Ponnuswamy (2006); Steel (2005); Ward et al. (2001); Zhang et al. (2005); Zou et al. (2004).graphic file with name e-64-00m69-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C19H15N3)]

  • M r = 462.64

  • Orthorhombic, Inline graphic

  • a = 9.330 (6) Å

  • b = 12.139 (8) Å

  • c = 15.918 (11) Å

  • V = 1803 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 293 (2) K

  • 0.20 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.772, T max = 0.848

  • 10453 measured reflections

  • 3702 independent reflections

  • 3340 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.054

  • S = 1.03

  • 3702 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983), 1580 Friedel pairs

  • Flack parameter: 0.00 (3)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062927/bi2262sup1.cif

e-64-00m69-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062927/bi2262Isup2.hkl

e-64-00m69-Isup2.hkl (181.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg1i 0.93 2.89 3.602 134
C18—H18ACg2ii 0.93 3.05 3.803 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of atoms C1–C5/C10 and Cg2 is the centroid of atoms Pd1/N2/C14/C15/N3.

Acknowledgments

This work was supported by the Startup Fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (No. 2008 to C-SL). The authors also thank Nankai University and Henan Provincial Key Laboratory of Surface & Interface Science for supporting this research.

supplementary crystallographic information

Comment

In recent years, attention has been focused on the synthetic approach and the structural control of metal-organic coordination architectures with ligands based on pyrazolyl-pyridine chelating units (Steel, 2005; Ward et al., 2001). In this field, Ward and co-workers have reported novel functional complexes through the use of 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole-based ligands (Bell et al., 2003; Paul et al., 2004; Singh et al., 2003; Ward et al., 2001; Zou et al., 2004). Recently, we have reported the preparation of a non-planar ligand, 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (denoted L) (Liu & Li et al., 2007; Liu & Zhang et al., 2007; Zhang et al., 2005). We report here the crystal structure of a palladium complex of this ligand, [(L)PdCl2].

In the title compound, the PdII centre is four-coordinated by two N-atom donors from one L ligand and two Cl atoms. The coordination geometry around the PdII center can be described as a slightly distorted square-plane (Fig. 1). In the crystal structure, the PdII mononuclear units form intermolecular π···π stacking interactions between pyrazolyl-pyridine and naphthalene rings of neighbouring L ligands with a centroid–centroid separation of 3.522 (1) Å (Janiak, 2000) and C—H···π interactions involving C1/C2/C3/C4/C5/C10 (centroid Cg1) benzene rings of the L ligands as well as five-membered chelate rings Pd1/N2/C14/C15/N3 (centroid Cg2) (Sony and Ponnuswamy, 2006) (Fig. 2).

Experimental

The ligand 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (L) was synthesized according to the method reported in the literature (Liu & Li et al., 2007; Liu & Zhang et al., 2007; Zhang et al., 2005). A solution of PdCl2 (0.1 mmol) in methanol (15 ml) and acetonitrile (5 ml) was added to L (0.1 mmol). A yellow solid formed was filtered off and the resulting solution was kept at room temperature. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days. Yield: ca 30%. Elemental analysis calculated: C 49.32, H 3.27, N 9.08%; found: C 49.47, H 3.16, N 9.20%.

Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Fig. 2.

Fig. 2.

Part of the crystal packing showing a two-dimensional network structure in the title compound formed by the co-effects of intermolecular C—H···π (dashed solid lines) and π···π stacking (dashed open lines) interactions. For the sake of clarity, only H atoms involved in the interactions are shown.

Crystal data

[PdCl2(C19H15N3)] F000 = 920
Mr = 462.64 Dx = 1.705 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 970 reflections
a = 9.330 (6) Å θ = 3.4–26.4º
b = 12.139 (8) Å µ = 1.33 mm1
c = 15.918 (11) Å T = 293 (2) K
V = 1803 (2) Å3 Block, yellow
Z = 4 0.20 × 0.16 × 0.12 mm

Data collection

Bruker SMART CCD diffractometer 3702 independent reflections
Radiation source: fine-focus sealed tube 3340 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.028
T = 293(2) K θmax = 26.5º
ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Bruker, 1998) h = −10→11
Tmin = 0.772, Tmax = 0.848 k = −14→15
10453 measured reflections l = −19→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024   w = 1/[σ2(Fo2) + (0.0227P)2 + 0.3859P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.27 e Å3
3702 reflections Δρmin = −0.37 e Å3
226 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1580 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.00 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.83064 (2) 0.490954 (17) 0.051890 (13) 0.03837 (7)
C1 0.5698 (4) 0.9043 (3) 0.1086 (3) 0.0546 (9)
H1A 0.6381 0.9001 0.0662 0.065*
C2 0.5637 (4) 0.9961 (3) 0.1585 (3) 0.0654 (10)
H2A 0.6281 1.0534 0.1498 0.079*
C3 0.4620 (4) 1.0044 (4) 0.2221 (2) 0.0704 (12)
H3A 0.4589 1.0670 0.2557 0.084*
C4 0.3679 (4) 0.9219 (4) 0.2351 (2) 0.0651 (11)
H4A 0.2993 0.9290 0.2771 0.078*
C5 0.3714 (3) 0.8245 (3) 0.1859 (2) 0.0511 (9)
C6 0.2756 (4) 0.7376 (4) 0.1995 (2) 0.0639 (11)
H6A 0.2078 0.7433 0.2421 0.077*
C7 0.2800 (4) 0.6453 (3) 0.1516 (3) 0.0613 (10)
H7A 0.2168 0.5878 0.1622 0.074*
C8 0.3806 (4) 0.6365 (3) 0.0856 (2) 0.0505 (8)
H8A 0.3824 0.5730 0.0530 0.061*
C9 0.4752 (3) 0.7192 (2) 0.0689 (2) 0.0408 (7)
C10 0.4739 (3) 0.8161 (3) 0.1208 (2) 0.0430 (7)
C11 0.5803 (3) 0.7164 (2) −0.0027 (2) 0.0444 (8)
H11A 0.5576 0.7758 −0.0412 0.053*
H11B 0.6756 0.7301 0.0193 0.053*
C12 0.5032 (4) 0.5886 (3) −0.1173 (2) 0.0534 (8)
H12A 0.4323 0.6329 −0.1406 0.064*
C13 0.5448 (3) 0.4872 (3) −0.1465 (2) 0.0512 (8)
H13A 0.5090 0.4492 −0.1927 0.061*
C14 0.6522 (3) 0.4540 (2) −0.09185 (19) 0.0397 (7)
C15 0.7469 (3) 0.3595 (2) −0.0911 (2) 0.0394 (7)
C16 0.7465 (4) 0.2785 (3) −0.1518 (2) 0.0479 (8)
H16A 0.6799 0.2806 −0.1952 0.058*
C17 0.8446 (4) 0.1953 (3) −0.1477 (3) 0.0612 (10)
H17A 0.8459 0.1404 −0.1885 0.073*
C18 0.9416 (5) 0.1935 (3) −0.0826 (3) 0.0675 (13)
H18A 1.0096 0.1377 −0.0789 0.081*
C19 0.9366 (4) 0.2753 (3) −0.0231 (3) 0.0619 (11)
H19A 1.0022 0.2740 0.0209 0.074*
N1 0.5823 (3) 0.6132 (2) −0.04930 (19) 0.0434 (6)
N2 0.6739 (3) 0.53078 (17) −0.03249 (14) 0.0378 (5)
N3 0.8397 (3) 0.35759 (19) −0.02653 (16) 0.0438 (6)
Cl1 1.00048 (11) 0.42155 (9) 0.13879 (7) 0.0708 (3)
Cl2 0.81909 (11) 0.64162 (6) 0.13707 (5) 0.0521 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.03920 (11) 0.03896 (11) 0.03696 (11) 0.00037 (11) 0.00213 (10) 0.00045 (11)
C1 0.058 (2) 0.0449 (19) 0.060 (2) 0.0110 (17) −0.0040 (18) 0.0000 (17)
C2 0.075 (2) 0.0455 (19) 0.076 (3) 0.013 (2) −0.024 (2) −0.010 (2)
C3 0.077 (3) 0.066 (3) 0.068 (2) 0.035 (3) −0.030 (2) −0.022 (2)
C4 0.062 (3) 0.083 (3) 0.051 (2) 0.038 (2) −0.0089 (18) −0.015 (2)
C5 0.043 (2) 0.064 (2) 0.045 (2) 0.0218 (16) −0.0049 (15) 0.0039 (17)
C6 0.054 (2) 0.091 (3) 0.047 (2) 0.019 (2) 0.0085 (18) 0.009 (2)
C7 0.052 (2) 0.067 (3) 0.065 (3) −0.0033 (18) 0.0031 (19) 0.016 (2)
C8 0.0479 (19) 0.0458 (18) 0.058 (2) 0.0036 (15) −0.0020 (16) 0.0069 (16)
C9 0.0423 (17) 0.0381 (15) 0.0422 (19) 0.0102 (13) 0.0011 (15) 0.0071 (13)
C10 0.0429 (18) 0.0443 (17) 0.0417 (18) 0.0133 (14) −0.0067 (14) −0.0004 (14)
C11 0.0485 (19) 0.0372 (17) 0.048 (2) 0.0078 (15) 0.0034 (15) 0.0021 (16)
C12 0.056 (2) 0.060 (2) 0.045 (2) 0.0141 (18) −0.0071 (18) 0.0007 (16)
C13 0.0554 (18) 0.057 (2) 0.0416 (17) 0.0038 (19) −0.0077 (14) −0.0047 (18)
C14 0.0411 (17) 0.0422 (15) 0.0357 (16) −0.0023 (14) 0.0045 (14) 0.0002 (12)
C15 0.0440 (18) 0.0360 (16) 0.0381 (18) −0.0043 (14) 0.0079 (14) 0.0011 (13)
C16 0.058 (2) 0.0444 (19) 0.041 (2) −0.0048 (15) 0.0079 (16) −0.0053 (15)
C17 0.075 (3) 0.0427 (18) 0.065 (2) 0.005 (2) 0.015 (3) −0.0149 (16)
C18 0.074 (3) 0.055 (2) 0.073 (3) 0.022 (2) −0.002 (2) −0.013 (2)
C19 0.070 (3) 0.054 (2) 0.062 (3) 0.0214 (19) −0.011 (2) −0.0067 (17)
N1 0.0465 (15) 0.0424 (13) 0.0414 (15) 0.0105 (11) 0.0035 (13) 0.0016 (14)
N2 0.0408 (12) 0.0366 (11) 0.0361 (13) 0.0021 (11) 0.0040 (11) 0.0018 (9)
N3 0.0489 (15) 0.0385 (12) 0.0440 (15) 0.0071 (14) 0.0022 (14) 0.0013 (10)
Cl1 0.0659 (6) 0.0788 (6) 0.0677 (6) 0.0211 (5) −0.0224 (5) −0.0102 (5)
Cl2 0.0678 (5) 0.0452 (4) 0.0435 (4) −0.0047 (4) 0.0009 (5) −0.0056 (3)

Geometric parameters (Å, °)

Pd1—N2 2.043 (3) C9—C11 1.504 (5)
Pd1—N3 2.046 (3) C11—N1 1.456 (4)
Pd1—Cl1 2.2658 (14) C11—H11A 0.970
Pd1—Cl2 2.2792 (14) C11—H11B 0.970
C1—C2 1.370 (5) C12—N1 1.343 (5)
C1—C10 1.408 (5) C12—C13 1.372 (5)
C1—H1A 0.930 C12—H12A 0.930
C2—C3 1.390 (6) C13—C14 1.387 (4)
C2—H2A 0.930 C13—H13A 0.930
C3—C4 1.347 (6) C14—N2 1.342 (4)
C3—H3A 0.930 C14—C15 1.448 (4)
C4—C5 1.418 (5) C15—N3 1.343 (4)
C4—H4A 0.930 C15—C16 1.379 (4)
C5—C6 1.399 (5) C16—C17 1.365 (5)
C5—C10 1.414 (5) C16—H16A 0.930
C6—C7 1.356 (6) C17—C18 1.377 (6)
C6—H6A 0.930 C17—H17A 0.930
C7—C8 1.413 (5) C18—C19 1.373 (5)
C7—H7A 0.930 C18—H18A 0.930
C8—C9 1.363 (5) C19—N3 1.348 (4)
C8—H8A 0.930 C19—H19A 0.930
C9—C10 1.438 (4) N1—N2 1.343 (3)
N2—Pd1—N3 79.38 (10) C9—C11—H11A 108.7
N2—Pd1—Cl1 171.74 (7) N1—C11—H11B 108.7
N3—Pd1—Cl1 92.83 (9) C9—C11—H11B 108.7
N2—Pd1—Cl2 99.63 (7) H11A—C11—H11B 107.6
N3—Pd1—Cl2 178.86 (7) N1—C12—C13 108.5 (3)
Cl1—Pd1—Cl2 88.18 (5) N1—C12—H12A 125.8
C2—C1—C10 120.8 (4) C13—C12—H12A 125.8
C2—C1—H1A 119.6 C12—C13—C14 104.6 (3)
C10—C1—H1A 119.6 C12—C13—H13A 127.7
C1—C2—C3 120.6 (4) C14—C13—H13A 127.7
C1—C2—H2A 119.7 N2—C14—C13 110.4 (3)
C3—C2—H2A 119.7 N2—C14—C15 116.8 (3)
C4—C3—C2 120.2 (4) C13—C14—C15 132.6 (3)
C4—C3—H3A 119.9 N3—C15—C16 121.7 (3)
C2—C3—H3A 119.9 N3—C15—C14 114.4 (3)
C3—C4—C5 121.3 (4) C16—C15—C14 123.9 (3)
C3—C4—H4A 119.3 C17—C16—C15 119.5 (4)
C5—C4—H4A 119.3 C17—C16—H16A 120.2
C6—C5—C10 119.4 (3) C15—C16—H16A 120.2
C6—C5—C4 121.9 (4) C16—C17—C18 119.2 (3)
C10—C5—C4 118.6 (4) C16—C17—H17A 120.4
C7—C6—C5 121.1 (4) C18—C17—H17A 120.4
C7—C6—H6A 119.5 C19—C18—C17 119.1 (4)
C5—C6—H6A 119.5 C19—C18—H18A 120.5
C6—C7—C8 120.1 (4) C17—C18—H18A 120.5
C6—C7—H7A 120.0 N3—C19—C18 122.0 (4)
C8—C7—H7A 120.0 N3—C19—H19A 119.0
C9—C8—C7 121.3 (3) C18—C19—H19A 119.0
C9—C8—H8A 119.4 C12—N1—N2 110.2 (3)
C7—C8—H8A 119.4 C12—N1—C11 126.5 (3)
C8—C9—C10 119.0 (3) N2—N1—C11 123.2 (3)
C8—C9—C11 123.6 (3) C14—N2—N1 106.3 (2)
C10—C9—C11 117.3 (3) C14—N2—Pd1 113.99 (19)
C1—C10—C5 118.5 (3) N1—N2—Pd1 139.7 (2)
C1—C10—C9 122.5 (3) C15—N3—C19 118.4 (3)
C5—C10—C9 119.1 (3) C15—N3—Pd1 115.2 (2)
N1—C11—C9 114.4 (3) C19—N3—Pd1 126.1 (2)
N1—C11—H11A 108.7
C10—C1—C2—C3 −0.3 (5) C14—C15—C16—C17 176.9 (3)
C1—C2—C3—C4 −0.2 (6) C15—C16—C17—C18 0.4 (6)
C2—C3—C4—C5 1.1 (6) C16—C17—C18—C19 0.3 (6)
C3—C4—C5—C6 179.1 (3) C17—C18—C19—N3 −0.1 (7)
C3—C4—C5—C10 −1.6 (5) C13—C12—N1—N2 −0.4 (4)
C10—C5—C6—C7 0.4 (5) C13—C12—N1—C11 175.1 (3)
C4—C5—C6—C7 179.6 (4) C9—C11—N1—C12 90.9 (4)
C5—C6—C7—C8 −1.2 (6) C9—C11—N1—N2 −94.1 (3)
C6—C7—C8—C9 0.4 (6) C13—C14—N2—N1 −0.6 (3)
C7—C8—C9—C10 1.3 (5) C15—C14—N2—N1 175.4 (2)
C7—C8—C9—C11 −177.3 (3) C13—C14—N2—Pd1 −179.9 (2)
C2—C1—C10—C5 −0.2 (5) C15—C14—N2—Pd1 −3.9 (3)
C2—C1—C10—C9 178.9 (3) C12—N1—N2—C14 0.6 (3)
C6—C5—C10—C1 −179.6 (3) C11—N1—N2—C14 −175.1 (3)
C4—C5—C10—C1 1.1 (5) C12—N1—N2—Pd1 179.6 (2)
C6—C5—C10—C9 1.3 (5) C11—N1—N2—Pd1 4.0 (5)
C4—C5—C10—C9 −178.0 (3) N3—Pd1—N2—C14 2.0 (2)
C8—C9—C10—C1 178.8 (3) Cl2—Pd1—N2—C14 −178.62 (19)
C11—C9—C10—C1 −2.5 (5) N3—Pd1—N2—N1 −177.0 (3)
C8—C9—C10—C5 −2.1 (5) Cl2—Pd1—N2—N1 2.4 (3)
C11—C9—C10—C5 176.6 (3) C16—C15—N3—C19 1.7 (5)
C8—C9—C11—N1 −5.1 (5) C14—C15—N3—C19 −176.8 (3)
C10—C9—C11—N1 176.2 (3) C16—C15—N3—Pd1 176.1 (2)
N1—C12—C13—C14 0.0 (4) C14—C15—N3—Pd1 −2.4 (3)
C12—C13—C14—N2 0.3 (4) C18—C19—N3—C15 −0.9 (6)
C12—C13—C14—C15 −174.8 (3) C18—C19—N3—Pd1 −174.7 (3)
N2—C14—C15—N3 4.2 (4) N2—Pd1—N3—C15 0.3 (2)
C13—C14—C15—N3 179.2 (3) Cl1—Pd1—N3—C15 177.6 (2)
N2—C14—C15—C16 −174.3 (3) N2—Pd1—N3—C19 174.2 (3)
C13—C14—C15—C16 0.7 (6) Cl1—Pd1—N3—C19 −8.5 (3)
N3—C15—C16—C17 −1.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17A···Cg1i 0.93 2.89 3.602 134
C18—H18A···Cg2ii 0.93 3.05 3.803 139

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2262).

References

  1. Bell, Z. R., Harding, L. P. & Ward, M. D. (2003). Chem. Commun. pp. 2432–2433. [DOI] [PubMed]
  2. Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  5. Liu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct.843, 66–77.
  6. Liu, C.-S., Zhang, H., Chen, R., Shi, X.-S., Bu, X.-H. & Yang, M. (2007). Chem. Pharm. Bull.55, 996–1001. [DOI] [PubMed]
  7. Paul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). J. Chem. Soc. Dalton Trans. pp. 3453–3458. [DOI] [PubMed]
  8. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  9. Singh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. & Mukherjee, R. (2003). J. Chem. Soc. Dalton Trans. pp. 3392–3397.
  10. Sony, S. M. M. & Ponnuswamy, M. N. (2006). Cryst. Growth Des.6, 736–742.
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Steel, P. J. (2005). Acc. Chem. Res.38, 243–250. [DOI] [PubMed]
  13. Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev.222, 251–272.
  14. Zhang, H., Liu, C.-S., Bu, X.-H. & Yang, M. (2005). J. Inorg. Biochem.99, 1119–1125. [DOI] [PubMed]
  15. Zou, R.-Q., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem.43, 5382–5386. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062927/bi2262sup1.cif

e-64-00m69-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062927/bi2262Isup2.hkl

e-64-00m69-Isup2.hkl (181.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES