Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o11. doi: 10.1107/S1600536807060916

N-(3,4-Dimethyl­phen­yl)acetamide

B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2914973  PMID: 21200674

Abstract

The conformation of the N—H bond in the title compound (34DMPA), C10H13NO, is syn to the 3-methyl substituent in the aromatic ring, in contrast to the anti conformation observed with respect to the 3-chloro substituent in N-(3,4-dichloro­phen­yl)acetamide (34DCPA). The asymmetric unit of the structure contains three mol­ecules. The bond parameters in 34DMPA are similar to those in 34DCPA, N-(2,6-dimethyl­phen­yl)acetamide, N-(3,5-dimethyl­phen­yl)acetamide and other acetanilides. The mol­ecules in 34DMPA are linked into infinite chains through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2007a ,b ); Gowda, Kozisek, Svoboda & Fuess (2007); Gowda, Kožíšek, Tokarčík & Fuess (2007); Jones et al. (1990); Shilpa & Gowda (2007).graphic file with name e-64-00o11-scheme1.jpg

Experimental

Crystal data

  • C10H13NO

  • M r = 163.21

  • Triclinic, Inline graphic

  • a = 6.749 (1) Å

  • b = 14.281 (2) Å

  • c = 15.005 (2) Å

  • α = 85.33 (1)°

  • β = 79.81 (1)°

  • γ = 87.58 (1)°

  • V = 1418.1 (3) Å3

  • Z = 6

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 299 (2) K

  • 0.35 × 0.33 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5528 measured reflections

  • 5025 independent reflections

  • 3386 reflections with I > 2σ(I)

  • R int = 0.044

  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.210

  • S = 1.03

  • 5025 reflections

  • 344 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060916/lw2051sup1.cif

e-64-00o11-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060916/lw2051Isup2.hkl

e-64-00o11-Isup2.hkl (246.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.88 (3) 2.08 (3) 2.956 (3) 177 (3)
N3—H3N⋯O2 0.86 (3) 2.14 (3) 2.989 (3) 172 (3)
N2—H2N⋯O1i 0.98 (3) 1.92 (3) 2.893 (3) 170 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

B.T.G. thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of N-(3,4-dimethylphenyl)-acetamide (34DMPA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2007a, b; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The conformation of the N—H bond in 34DMPA is syn to the 3-methyl substituent in the aromatic ring, in contrast to the anti conformation obseved with respect to the 3-chloro substituent in N-(3,4-dichlorophenyl)-acetamide (34DCPA) (Jones et al., 1990). The asymmetric unit of the structure contains 3 molecules. The bond parameters in 34DMPA are similar to those in 34DCPA (Jones et al., 1990), N-(2,6-dimethylphenyl)-acetamide (Gowda et al., 2007b), N-(3,5-dimethylphenyl)-acetamide (Gowda, Kožíšek, Tokarčík & Fuess, 2007) and other acetanilides. The molecules in 34DMPA are linked into chains through N—H···O hydrogen bonding (Table 1 & Fig. 2).

Experimental

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. The NH atoms were located in difference map with N—H = 0.86 (3)–0.98 (3) Å. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.were set equal to 1.2 Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H13NO Z = 6
Mr = 163.21 F000 = 528
Triclinic, P1 Dx = 1.147 Mg m3
Hall symbol: -P 1 Cu Kα radiation λ = 1.54180 Å
a = 6.749 (1) Å Cell parameters from 25 reflections
b = 14.281 (2) Å θ = 3.1–22.1º
c = 15.005 (2) Å µ = 0.59 mm1
α = 85.33 (1)º T = 299 (2) K
β = 79.81 (1)º Prism, colourless
γ = 87.58 (1)º 0.35 × 0.33 × 0.18 mm
V = 1418.1 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.044
Radiation source: fine-focus sealed tube θmax = 66.9º
Monochromator: graphite θmin = 3.0º
T = 299(2) K h = −8→1
ω/2θ scans k = −17→17
Absorption correction: none l = −17→17
5528 measured reflections 3 standard reflections
5025 independent reflections every 120 min
3386 reflections with I > 2σ(I) intensity decay: 2.0%

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064   w = 1/[σ2(Fo2) + (0.1316P)2 + 0.1229P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.210 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.26 e Å3
5025 reflections Δρmin = −0.27 e Å3
344 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0022 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6611 (4) 0.21887 (13) 0.27754 (16) 0.0935 (7)
N1 0.7204 (3) 0.37376 (14) 0.26524 (16) 0.0647 (6)
H1N 0.702 (4) 0.428 (2) 0.2362 (19) 0.078*
C1 0.8633 (4) 0.37519 (17) 0.32314 (17) 0.0633 (6)
C2 1.0021 (4) 0.44579 (19) 0.3073 (2) 0.0713 (7)
H2 1.0045 0.4879 0.2565 0.086*
C3 1.1384 (4) 0.4555 (2) 0.3653 (2) 0.0794 (8)
C4 1.1409 (5) 0.3917 (3) 0.4390 (2) 0.0906 (10)
C5 1.0037 (6) 0.3211 (3) 0.4542 (2) 0.0970 (10)
H5 1.0053 0.2774 0.5036 0.116*
C6 0.8637 (5) 0.3128 (2) 0.3985 (2) 0.0849 (9)
H6 0.7702 0.2654 0.4117 0.102*
C7 0.6247 (4) 0.29887 (17) 0.24731 (19) 0.0658 (6)
C8 0.4682 (4) 0.31912 (19) 0.1893 (2) 0.0778 (8)
H8A 0.4651 0.3850 0.1708 0.093*
H8B 0.3390 0.3016 0.2232 0.093*
H8C 0.4995 0.2838 0.1367 0.093*
C9 1.2754 (5) 0.5374 (3) 0.3480 (3) 0.1155 (13)
H9A 1.2499 0.5751 0.2951 0.139*
H9B 1.4130 0.5149 0.3385 0.139*
H9C 1.2511 0.5747 0.3995 0.139*
C10 1.2889 (7) 0.3980 (4) 0.5030 (3) 0.1352 (18)
H10A 1.4232 0.4007 0.4689 0.162*
H10B 1.2785 0.3437 0.5456 0.162*
H10C 1.2588 0.4537 0.5353 0.162*
O2 0.6415 (3) 0.89842 (12) 0.17410 (15) 0.0810 (6)
N2 0.7398 (3) 1.02533 (14) 0.23505 (15) 0.0625 (5)
H2N 0.709 (4) 1.092 (2) 0.2425 (18) 0.075*
C11 0.9017 (4) 0.98806 (17) 0.27568 (18) 0.0613 (6)
C12 0.9873 (4) 1.04469 (19) 0.32918 (18) 0.0697 (7)
H12 0.9362 1.1057 0.3360 0.084*
C13 1.1444 (5) 1.0139 (2) 0.37231 (19) 0.0775 (8)
C14 1.2212 (4) 0.9219 (2) 0.3629 (2) 0.0810 (8)
C15 1.1404 (5) 0.8675 (2) 0.3084 (3) 0.0908 (10)
H15 1.1927 0.8068 0.3009 0.109*
C16 0.9848 (4) 0.89835 (19) 0.2641 (2) 0.0822 (9)
H16 0.9360 0.8594 0.2267 0.099*
C17 0.6230 (4) 0.98221 (17) 0.18788 (17) 0.0617 (6)
C18 0.4661 (4) 1.04309 (19) 0.1511 (2) 0.0746 (7)
H18A 0.4555 1.1026 0.1774 0.089*
H18B 0.3387 1.0130 0.1660 0.089*
H18C 0.5031 1.0529 0.0863 0.089*
C19 1.2353 (6) 1.0776 (3) 0.4266 (3) 0.1110 (12)
H19A 1.1668 1.1379 0.4254 0.133*
H19B 1.3752 1.0848 0.4013 0.133*
H19C 1.2225 1.0513 0.4882 0.133*
C20 1.3884 (5) 0.8838 (3) 0.4104 (3) 0.1128 (13)
H20A 1.5045 0.9218 0.3914 0.135*
H20B 1.4218 0.8203 0.3953 0.135*
H20C 1.3459 0.8849 0.4748 0.135*
O3 0.6498 (3) 0.55410 (11) 0.16267 (14) 0.0773 (6)
N3 0.5363 (3) 0.70443 (13) 0.14131 (14) 0.0607 (5)
H3N 0.555 (4) 0.760 (2) 0.1545 (18) 0.073*
C21 0.3877 (4) 0.69495 (15) 0.08863 (16) 0.0565 (6)
C22 0.2832 (4) 0.77608 (17) 0.06384 (16) 0.0609 (6)
H22 0.3169 0.8330 0.0823 0.073*
C23 0.1323 (4) 0.7758 (2) 0.01327 (18) 0.0683 (7)
C24 0.0808 (4) 0.6904 (2) −0.0150 (2) 0.0764 (8)
C25 0.1861 (5) 0.6102 (2) 0.0097 (2) 0.0824 (8)
H25 0.1532 0.5533 −0.0092 0.099*
C26 0.3366 (4) 0.60984 (18) 0.0604 (2) 0.0723 (7)
H26 0.4032 0.5540 0.0756 0.087*
C27 0.6556 (4) 0.63784 (16) 0.17531 (16) 0.0600 (6)
C28 0.7946 (5) 0.67177 (19) 0.2314 (2) 0.0846 (9)
H28A 0.9251 0.6808 0.1947 0.101*
H28B 0.8056 0.6261 0.2810 0.101*
H28C 0.7430 0.7303 0.2546 0.101*
C29 0.0253 (5) 0.8664 (3) −0.0104 (2) 0.0974 (10)
H29A −0.1148 0.8630 0.0161 0.117*
H29B 0.0386 0.8766 −0.0752 0.117*
H29C 0.0836 0.9175 0.0127 0.117*
C30 −0.0827 (5) 0.6855 (3) −0.0706 (2) 0.1065 (12)
H30A −0.2087 0.7060 −0.0365 0.128*
H30B −0.0925 0.6218 −0.0854 0.128*
H30C −0.0511 0.7254 −0.1256 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1197 (17) 0.0455 (10) 0.1293 (18) 0.0036 (10) −0.0624 (14) −0.0039 (10)
N1 0.0750 (14) 0.0435 (10) 0.0809 (14) 0.0084 (9) −0.0294 (11) −0.0085 (9)
C1 0.0722 (16) 0.0520 (13) 0.0701 (15) 0.0128 (11) −0.0214 (13) −0.0183 (11)
C2 0.0703 (16) 0.0615 (15) 0.0851 (18) 0.0085 (12) −0.0187 (14) −0.0180 (13)
C3 0.0669 (17) 0.0801 (19) 0.095 (2) 0.0081 (14) −0.0113 (15) −0.0384 (16)
C4 0.094 (2) 0.107 (3) 0.078 (2) 0.0302 (19) −0.0285 (17) −0.0381 (19)
C5 0.128 (3) 0.095 (2) 0.0727 (19) 0.019 (2) −0.033 (2) −0.0118 (17)
C6 0.112 (2) 0.0733 (18) 0.0740 (17) 0.0072 (16) −0.0310 (17) −0.0088 (14)
C7 0.0712 (15) 0.0480 (13) 0.0822 (17) 0.0085 (11) −0.0229 (13) −0.0134 (11)
C8 0.0755 (17) 0.0617 (15) 0.104 (2) 0.0046 (13) −0.0362 (16) −0.0142 (14)
C9 0.092 (2) 0.126 (3) 0.133 (3) −0.020 (2) −0.015 (2) −0.041 (3)
C10 0.125 (3) 0.190 (5) 0.109 (3) 0.038 (3) −0.060 (3) −0.061 (3)
O2 0.0835 (13) 0.0536 (10) 0.1117 (15) −0.0016 (9) −0.0232 (11) −0.0266 (10)
N2 0.0678 (12) 0.0451 (10) 0.0776 (13) −0.0025 (9) −0.0202 (11) −0.0051 (9)
C11 0.0581 (13) 0.0532 (13) 0.0713 (15) −0.0023 (10) −0.0100 (12) 0.0011 (11)
C12 0.0714 (16) 0.0664 (16) 0.0741 (16) 0.0001 (12) −0.0187 (14) −0.0102 (12)
C13 0.0732 (17) 0.094 (2) 0.0659 (16) −0.0067 (15) −0.0133 (14) −0.0036 (14)
C14 0.0640 (16) 0.089 (2) 0.0840 (19) 0.0010 (15) −0.0099 (15) 0.0200 (16)
C15 0.0762 (19) 0.0631 (17) 0.132 (3) 0.0055 (14) −0.0238 (19) 0.0067 (18)
C16 0.0772 (18) 0.0521 (14) 0.122 (2) 0.0023 (12) −0.0285 (18) −0.0108 (15)
C17 0.0597 (14) 0.0531 (13) 0.0713 (15) −0.0071 (10) −0.0063 (12) −0.0077 (11)
C18 0.0770 (17) 0.0628 (15) 0.0889 (19) −0.0060 (13) −0.0286 (15) −0.0025 (13)
C19 0.108 (3) 0.130 (3) 0.107 (3) 0.004 (2) −0.044 (2) −0.030 (2)
C20 0.088 (2) 0.131 (3) 0.116 (3) 0.004 (2) −0.029 (2) 0.033 (2)
O3 0.0991 (14) 0.0402 (9) 0.1004 (14) 0.0032 (8) −0.0406 (11) −0.0032 (8)
N3 0.0747 (13) 0.0378 (10) 0.0753 (13) 0.0002 (9) −0.0272 (11) −0.0072 (9)
C21 0.0622 (14) 0.0466 (12) 0.0624 (13) 0.0019 (10) −0.0150 (11) −0.0074 (10)
C22 0.0681 (15) 0.0503 (12) 0.0650 (14) 0.0039 (10) −0.0144 (12) −0.0051 (10)
C23 0.0603 (14) 0.0786 (17) 0.0635 (15) 0.0098 (12) −0.0093 (12) −0.0006 (12)
C24 0.0604 (15) 0.098 (2) 0.0734 (17) 0.0008 (14) −0.0160 (13) −0.0144 (15)
C25 0.085 (2) 0.0730 (18) 0.098 (2) −0.0096 (15) −0.0327 (17) −0.0188 (15)
C26 0.0814 (18) 0.0517 (14) 0.0914 (19) −0.0013 (12) −0.0318 (15) −0.0141 (12)
C27 0.0740 (15) 0.0439 (12) 0.0643 (14) −0.0023 (10) −0.0202 (12) 0.0016 (10)
C28 0.111 (2) 0.0558 (15) 0.099 (2) 0.0038 (14) −0.0545 (19) −0.0015 (14)
C29 0.085 (2) 0.104 (2) 0.100 (2) 0.0300 (18) −0.0245 (18) 0.0084 (19)
C30 0.076 (2) 0.159 (4) 0.093 (2) 0.002 (2) −0.0321 (18) −0.026 (2)

Geometric parameters (Å, °)

O1—C7 1.226 (3) C15—H15 0.9300
N1—C7 1.342 (3) C16—H16 0.9300
N1—C1 1.410 (3) C17—C18 1.494 (4)
N1—H1N 0.88 (3) C18—H18A 0.9600
C1—C6 1.382 (4) C18—H18B 0.9600
C1—C2 1.383 (4) C18—H18C 0.9600
C2—C3 1.391 (4) C19—H19A 0.9600
C2—H2 0.9300 C19—H19B 0.9600
C3—C4 1.376 (5) C19—H19C 0.9600
C3—C9 1.500 (5) C20—H20A 0.9600
C4—C5 1.376 (5) C20—H20B 0.9600
C4—C10 1.514 (4) C20—H20C 0.9600
C5—C6 1.382 (4) O3—C27 1.229 (3)
C5—H5 0.9300 N3—C27 1.347 (3)
C6—H6 0.9300 N3—C21 1.399 (3)
C7—C8 1.488 (4) N3—H3N 0.86 (3)
C8—H8A 0.9600 C21—C22 1.390 (3)
C8—H8B 0.9600 C21—C26 1.395 (3)
C8—H8C 0.9600 C22—C23 1.374 (4)
C9—H9A 0.9600 C22—H22 0.9300
C9—H9B 0.9600 C23—C24 1.400 (4)
C9—H9C 0.9600 C23—C29 1.503 (4)
C10—H10A 0.9600 C24—C25 1.382 (4)
C10—H10B 0.9600 C24—C30 1.504 (4)
C10—H10C 0.9600 C25—C26 1.372 (4)
O2—C17 1.228 (3) C25—H25 0.9300
N2—C17 1.346 (3) C26—H26 0.9300
N2—C11 1.408 (3) C27—C28 1.486 (4)
N2—H2N 0.98 (3) C28—H28A 0.9600
C11—C16 1.388 (4) C28—H28B 0.9600
C11—C12 1.393 (4) C28—H28C 0.9600
C12—C13 1.376 (4) C29—H29A 0.9600
C12—H12 0.9300 C29—H29B 0.9600
C13—C14 1.401 (5) C29—H29C 0.9600
C13—C19 1.487 (4) C30—H30A 0.9600
C14—C15 1.366 (5) C30—H30B 0.9600
C14—C20 1.499 (4) C30—H30C 0.9600
C15—C16 1.378 (4)
C7—N1—C1 127.2 (2) O2—C17—N2 123.6 (2)
C7—N1—H1N 119.3 (19) O2—C17—C18 120.6 (2)
C1—N1—H1N 113.3 (19) N2—C17—C18 115.8 (2)
C6—C1—C2 118.2 (3) C17—C18—H18A 109.5
C6—C1—N1 123.0 (3) C17—C18—H18B 109.5
C2—C1—N1 118.6 (2) H18A—C18—H18B 109.5
C1—C2—C3 121.8 (3) C17—C18—H18C 109.5
C1—C2—H2 119.1 H18A—C18—H18C 109.5
C3—C2—H2 119.1 H18B—C18—H18C 109.5
C4—C3—C2 119.6 (3) C13—C19—H19A 109.5
C4—C3—C9 121.2 (3) C13—C19—H19B 109.5
C2—C3—C9 119.2 (3) H19A—C19—H19B 109.5
C5—C4—C3 118.5 (3) C13—C19—H19C 109.5
C5—C4—C10 119.9 (4) H19A—C19—H19C 109.5
C3—C4—C10 121.7 (4) H19B—C19—H19C 109.5
C4—C5—C6 122.2 (3) C14—C20—H20A 109.5
C4—C5—H5 118.9 C14—C20—H20B 109.5
C6—C5—H5 118.9 H20A—C20—H20B 109.5
C1—C6—C5 119.7 (3) C14—C20—H20C 109.5
C1—C6—H6 120.2 H20A—C20—H20C 109.5
C5—C6—H6 120.2 H20B—C20—H20C 109.5
O1—C7—N1 122.5 (2) C27—N3—C21 129.3 (2)
O1—C7—C8 121.8 (2) C27—N3—H3N 114.5 (19)
N1—C7—C8 115.7 (2) C21—N3—H3N 116.2 (18)
C7—C8—H8A 109.5 C22—C21—C26 118.2 (2)
C7—C8—H8B 109.5 C22—C21—N3 117.3 (2)
H8A—C8—H8B 109.5 C26—C21—N3 124.5 (2)
C7—C8—H8C 109.5 C23—C22—C21 122.9 (2)
H8A—C8—H8C 109.5 C23—C22—H22 118.6
H8B—C8—H8C 109.5 C21—C22—H22 118.6
C3—C9—H9A 109.5 C22—C23—C24 119.0 (2)
C3—C9—H9B 109.5 C22—C23—C29 119.8 (3)
H9A—C9—H9B 109.5 C24—C23—C29 121.2 (3)
C3—C9—H9C 109.5 C25—C24—C23 117.7 (3)
H9A—C9—H9C 109.5 C25—C24—C30 120.7 (3)
H9B—C9—H9C 109.5 C23—C24—C30 121.5 (3)
C4—C10—H10A 109.5 C26—C25—C24 123.7 (3)
C4—C10—H10B 109.5 C26—C25—H25 118.2
H10A—C10—H10B 109.5 C24—C25—H25 118.2
C4—C10—H10C 109.5 C25—C26—C21 118.6 (3)
H10A—C10—H10C 109.5 C25—C26—H26 120.7
H10B—C10—H10C 109.5 C21—C26—H26 120.7
C17—N2—C11 129.2 (2) O3—C27—N3 123.1 (2)
C17—N2—H2N 116.1 (16) O3—C27—C28 121.4 (2)
C11—N2—H2N 114.7 (16) N3—C27—C28 115.5 (2)
C16—C11—C12 117.6 (3) C27—C28—H28A 109.5
C16—C11—N2 123.8 (2) C27—C28—H28B 109.5
C12—C11—N2 118.5 (2) H28A—C28—H28B 109.5
C13—C12—C11 122.6 (3) C27—C28—H28C 109.5
C13—C12—H12 118.7 H28A—C28—H28C 109.5
C11—C12—H12 118.7 H28B—C28—H28C 109.5
C12—C13—C14 119.0 (3) C23—C29—H29A 109.5
C12—C13—C19 120.8 (3) C23—C29—H29B 109.5
C14—C13—C19 120.1 (3) H29A—C29—H29B 109.5
C15—C14—C13 118.1 (3) C23—C29—H29C 109.5
C15—C14—C20 120.5 (3) H29A—C29—H29C 109.5
C13—C14—C20 121.3 (3) H29B—C29—H29C 109.5
C14—C15—C16 123.1 (3) C24—C30—H30A 109.5
C14—C15—H15 118.5 C24—C30—H30B 109.5
C16—C15—H15 118.5 H30A—C30—H30B 109.5
C15—C16—C11 119.5 (3) C24—C30—H30C 109.5
C15—C16—H16 120.3 H30A—C30—H30C 109.5
C11—C16—H16 120.3 H30B—C30—H30C 109.5
C7—N1—C1—C6 −29.7 (4) C19—C13—C14—C20 3.1 (5)
C7—N1—C1—C2 154.5 (3) C13—C14—C15—C16 −1.3 (5)
C6—C1—C2—C3 −0.6 (4) C20—C14—C15—C16 179.1 (3)
N1—C1—C2—C3 175.4 (2) C14—C15—C16—C11 −1.2 (5)
C1—C2—C3—C4 2.2 (4) C12—C11—C16—C15 2.9 (4)
C1—C2—C3—C9 −175.8 (3) N2—C11—C16—C15 −178.6 (3)
C2—C3—C4—C5 −1.6 (4) C11—N2—C17—O2 1.1 (4)
C9—C3—C4—C5 176.3 (3) C11—N2—C17—C18 −178.3 (2)
C2—C3—C4—C10 178.8 (3) C27—N3—C21—C22 178.8 (2)
C9—C3—C4—C10 −3.3 (5) C27—N3—C21—C26 −0.5 (4)
C3—C4—C5—C6 −0.5 (5) C26—C21—C22—C23 0.2 (4)
C10—C4—C5—C6 179.2 (3) N3—C21—C22—C23 −179.1 (2)
C2—C1—C6—C5 −1.4 (4) C21—C22—C23—C24 −0.1 (4)
N1—C1—C6—C5 −177.3 (3) C21—C22—C23—C29 179.6 (3)
C4—C5—C6—C1 2.0 (5) C22—C23—C24—C25 −0.1 (4)
C1—N1—C7—O1 −4.0 (5) C29—C23—C24—C25 −179.9 (3)
C1—N1—C7—C8 175.1 (2) C22—C23—C24—C30 −179.9 (3)
C17—N2—C11—C16 7.9 (4) C29—C23—C24—C30 0.4 (4)
C17—N2—C11—C12 −173.6 (3) C23—C24—C25—C26 0.3 (5)
C16—C11—C12—C13 −2.1 (4) C30—C24—C25—C26 −179.9 (3)
N2—C11—C12—C13 179.3 (2) C24—C25—C26—C21 −0.3 (5)
C11—C12—C13—C14 −0.4 (4) C22—C21—C26—C25 0.0 (4)
C11—C12—C13—C19 178.2 (3) N3—C21—C26—C25 179.3 (3)
C12—C13—C14—C15 2.1 (4) C21—N3—C27—O3 0.7 (4)
C19—C13—C14—C15 −176.5 (3) C21—N3—C27—C28 −178.2 (3)
C12—C13—C14—C20 −178.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3 0.88 (3) 2.08 (3) 2.956 (3) 177 (3)
N3—H3N···O2 0.86 (3) 2.14 (3) 2.989 (3) 172 (3)
N2—H2N···O1i 0.98 (3) 1.92 (3) 2.893 (3) 170 (2)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2051).

References

  1. Enraf–Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf–Nonius, Delft, The Netherlands.
  2. Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2341–o2342.
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3154.
  4. Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
  5. Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.
  6. Jones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78–81.
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  8. Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060916/lw2051sup1.cif

e-64-00o11-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060916/lw2051Isup2.hkl

e-64-00o11-Isup2.hkl (246.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES