Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o12. doi: 10.1107/S1600536807061636

1-(2-Methoxy­ethoxy)-4-nitro­benzene

Yang Liu a, Wei-Na Xu a, Xiao-Ling Zhang a, Jian-Ping Ma a, Dian-Shun Guo a,*
PMCID: PMC2914974  PMID: 21200683

Abstract

The title compound, C9H11NO4, is an inter­mediate for dyes and drugs. The O—C—C—O chain adopts a synclinal conformation. The crystal structure is stabilized by C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Guo et al. (2006); Higson (1992).graphic file with name e-64-00o12-scheme1.jpg

Experimental

Crystal data

  • C9H11NO4

  • M r = 197.19

  • Orthorhombic, Inline graphic

  • a = 11.280 (3) Å

  • b = 20.430 (5) Å

  • c = 4.1079 (10) Å

  • V = 946.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 (2) K

  • 0.49 × 0.43 × 0.38 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.948, T max = 0.959

  • 4034 measured reflections

  • 1023 independent reflections

  • 982 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.079

  • S = 1.05

  • 1023 reflections

  • 130 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: 2 (1)

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061636/bt2633sup1.cif

e-64-00o12-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061636/bt2633Isup2.hkl

e-64-00o12-Isup2.hkl (85.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.65 3.419 (3) 140
C3—H3⋯O3ii 0.93 2.50 3.317 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support by the National Natural Science Found­ation of China (No. 20572064) and Shandong Province Natural Science Foundation (Y2006B30) is gratefully acknowledged.

supplementary crystallographic information

Comment

Nitroaromatic compounds are widely used as pesticides, explosives, and precursors for dyes and many pharmaceutical agents (Higson, 1992). Recently, we described the structure of a nitrobenzene derivative containing a polyether linkage which can be used as an asymmetric alkylating agent (Guo et al., 2006). Herein, we report the structure of another nitrobenzene derivative, in which an asymmetric ethylene glycol ether strand is appended to the para position of nitro group.

The title compound consists of an ethylene glycol monomethyl ether unit and a nitro-substituted benzene ring (Fig. 1). In the crystal structure the nitro group is coplanar with the benzene ring. Interestingly, there are two intermolecular hydrogen bonds (Table 1).

Experimental

To a mixture of 2-methoxyethanol (0.190 ml, 2.40 mmol) and potassium hydroxide (0.120 g, 3.00 mmol) in DMSO (5 ml), was added a solution of 1-chloro-4-nitrobenzene (0.315 g, 2.00 mmol) in DMSO (5 ml). The resulting mixture was stirred for 20 h at 333 K and cooled to room temperature. The reaction mixture was poured into HCl 5% solution. The precipitate was filtered off and washed with water. After drying in vacuum, the title compound was obtained as a yellow solid in 90% yield. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of anhydrous ethanol at 273 K.

Refinement

In the absence of anomalous scatterers Friedel pairs had been merged and the absolute configuration was arbitrarily assigned. All H atoms were included in calculated positions refined as riding model with Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97Å and Caromatic—H = 0.93Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Crystal data

C9H11NO4 Dx = 1.384 Mg m3
Mr = 197.19 Mo Kα radiation λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 2528 reflections
a = 11.280 (3) Å θ = 2.7–27.8º
b = 20.430 (5) Å µ = 0.11 mm1
c = 4.1079 (10) Å T = 100 (2) K
V = 946.7 (4) Å3 Block, colourless
Z = 4 0.49 × 0.43 × 0.38 mm
F000 = 416

Data collection

Bruker SMART CCD area-detector diffractometer 1023 independent reflections
Radiation source: fine-focus sealed tube 982 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
T = 100(2) K θmax = 25.7º
phi and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 1999) h = −12→13
Tmin = 0.948, Tmax = 0.959 k = −15→24
4034 measured reflections l = −4→4

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031   w = 1/[σ2(Fo2) + (0.0395P)2 + 0.1764P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.13 e Å3
1023 reflections Δρmin = −0.12 e Å3
130 parameters Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.032 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983)
Secondary atom site location: difference Fourier map Flack parameter: 2 (1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.05088 (16) 0.68859 (9) −0.1216 (7) 0.0407 (5)
C2 −0.08278 (16) 0.62314 (9) −0.1160 (6) 0.0373 (5)
H2 −0.1522 0.6090 −0.2160 0.045*
C3 −0.00976 (16) 0.57971 (9) 0.0401 (6) 0.0341 (5)
H3 −0.0303 0.5357 0.0490 0.041*
C4 0.09501 (15) 0.60085 (8) 0.1858 (6) 0.0310 (5)
C5 0.12605 (16) 0.66669 (9) 0.1780 (6) 0.0382 (5)
H5 0.1956 0.6811 0.2762 0.046*
C6 0.05189 (18) 0.71044 (9) 0.0221 (7) 0.0446 (6)
H6 0.0715 0.7546 0.0143 0.054*
C7 0.27095 (16) 0.57084 (10) 0.4767 (6) 0.0363 (5)
H7A 0.2588 0.6054 0.6354 0.044*
H7B 0.3259 0.5866 0.3127 0.044*
C8 0.31983 (17) 0.51107 (10) 0.6395 (6) 0.0411 (5)
H8A 0.3888 0.5228 0.7677 0.049*
H8B 0.2608 0.4928 0.7851 0.049*
C9 0.3945 (2) 0.40593 (11) 0.5514 (9) 0.0536 (7)
H9A 0.4592 0.4164 0.6939 0.080*
H9B 0.4212 0.3762 0.3858 0.080*
H9C 0.3319 0.3858 0.6744 0.080*
N1 −0.12710 (18) 0.73499 (9) −0.2931 (7) 0.0580 (6)
O1 −0.21750 (15) 0.71456 (9) −0.4228 (6) 0.0687 (6)
O2 −0.09783 (16) 0.79250 (8) −0.3004 (9) 0.0948 (10)
O3 0.16033 (10) 0.55315 (6) 0.3289 (4) 0.0354 (4)
O4 0.35171 (11) 0.46405 (7) 0.4039 (4) 0.0414 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0379 (10) 0.0363 (10) 0.0479 (14) 0.0084 (8) 0.0100 (11) 0.0041 (11)
C2 0.0314 (8) 0.0389 (10) 0.0418 (12) 0.0007 (7) 0.0028 (10) −0.0049 (11)
C3 0.0333 (9) 0.0295 (8) 0.0396 (11) −0.0048 (7) 0.0042 (9) −0.0033 (10)
C4 0.0296 (9) 0.0298 (9) 0.0336 (11) −0.0002 (7) 0.0077 (8) −0.0041 (9)
C5 0.0335 (9) 0.0320 (9) 0.0490 (14) −0.0071 (7) 0.0042 (10) −0.0042 (11)
C6 0.0444 (11) 0.0268 (9) 0.0626 (16) −0.0005 (8) 0.0092 (12) 0.0013 (11)
C7 0.0317 (9) 0.0415 (10) 0.0357 (13) −0.0061 (8) 0.0023 (9) −0.0074 (9)
C8 0.0382 (10) 0.0512 (12) 0.0338 (12) −0.0022 (9) −0.0032 (10) −0.0010 (11)
C9 0.0465 (11) 0.0506 (12) 0.0637 (17) 0.0076 (9) −0.0042 (13) 0.0163 (14)
N1 0.0531 (11) 0.0456 (11) 0.0752 (18) 0.0149 (9) 0.0053 (12) 0.0099 (13)
O1 0.0553 (10) 0.0677 (11) 0.0830 (15) 0.0171 (8) −0.0121 (12) 0.0117 (13)
O2 0.0856 (13) 0.0423 (9) 0.157 (3) 0.0116 (8) −0.0187 (18) 0.0259 (15)
O3 0.0298 (6) 0.0289 (6) 0.0474 (10) −0.0041 (5) −0.0013 (7) 0.0000 (7)
O4 0.0450 (7) 0.0415 (7) 0.0376 (8) 0.0067 (6) −0.0007 (8) 0.0043 (7)

Geometric parameters (Å, °)

C1—C6 1.375 (3) C7—C8 1.497 (3)
C1—C2 1.385 (3) C7—H7A 0.9700
C1—N1 1.461 (3) C7—H7B 0.9700
C2—C3 1.370 (3) C8—O4 1.410 (3)
C2—H2 0.9300 C8—H8A 0.9700
C3—C4 1.393 (3) C8—H8B 0.9700
C3—H3 0.9300 C9—O4 1.418 (3)
C4—O3 1.356 (2) C9—H9A 0.9600
C4—C5 1.390 (2) C9—H9B 0.9600
C5—C6 1.382 (3) C9—H9C 0.9600
C5—H5 0.9300 N1—O2 1.221 (2)
C6—H6 0.9300 N1—O1 1.224 (3)
C7—O3 1.434 (2)
C6—C1—C2 121.69 (19) O3—C7—H7B 110.2
C6—C1—N1 119.50 (18) C8—C7—H7B 110.2
C2—C1—N1 118.8 (2) H7A—C7—H7B 108.5
C3—C2—C1 118.48 (19) O4—C8—C7 110.1 (2)
C3—C2—H2 120.8 O4—C8—H8A 109.6
C1—C2—H2 120.8 C7—C8—H8A 109.6
C2—C3—C4 120.68 (17) O4—C8—H8B 109.6
C2—C3—H3 119.7 C7—C8—H8B 109.6
C4—C3—H3 119.7 H8A—C8—H8B 108.2
O3—C4—C5 124.65 (18) O4—C9—H9A 109.5
O3—C4—C3 115.11 (15) O4—C9—H9B 109.5
C5—C4—C3 120.25 (19) H9A—C9—H9B 109.5
C6—C5—C4 118.95 (19) O4—C9—H9C 109.5
C6—C5—H5 120.5 H9A—C9—H9C 109.5
C4—C5—H5 120.5 H9B—C9—H9C 109.5
C1—C6—C5 119.96 (18) O2—N1—O1 122.9 (2)
C1—C6—H6 120.0 O2—N1—C1 118.5 (2)
C5—C6—H6 120.0 O1—N1—C1 118.61 (18)
O3—C7—C8 107.69 (15) C4—O3—C7 118.38 (14)
O3—C7—H7A 110.2 C8—O4—C9 111.3 (2)
C8—C7—H7A 110.2
C6—C1—C2—C3 0.6 (4) O3—C7—C8—O4 67.3 (2)
N1—C1—C2—C3 178.8 (2) C6—C1—N1—O2 −0.9 (4)
C1—C2—C3—C4 −0.9 (3) C2—C1—N1—O2 −179.2 (3)
C2—C3—C4—O3 −179.2 (2) C6—C1—N1—O1 179.2 (3)
C2—C3—C4—C5 0.8 (3) C2—C1—N1—O1 0.9 (4)
O3—C4—C5—C6 179.6 (2) C5—C4—O3—C7 −1.6 (3)
C3—C4—C5—C6 −0.4 (3) C3—C4—O3—C7 178.42 (19)
C2—C1—C6—C5 −0.2 (4) C8—C7—O3—C4 175.33 (18)
N1—C1—C6—C5 −178.4 (2) C7—C8—O4—C9 −177.94 (16)
C4—C5—C6—C1 0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1i 0.93 2.65 3.419 (3) 140
C3—H3···O3ii 0.93 2.50 3.317 (2) 147

Symmetry codes: (i) x+1/2, −y+3/2, z+1; (ii) −x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2633).

References

  1. Bruker (1999). SMART (Version 5.6), SAINT (Version 5.A06) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2001). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Guo, D.-S., Zhang, X.-Y., Liu, Z.-P. & Ma, J.-P. (2006). Acta Cryst. E62, o3655–o3656.
  5. Higson, F. K. (1992). Adv. Appl. Microbiol.37, 1–19. [DOI] [PubMed]
  6. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061636/bt2633sup1.cif

e-64-00o12-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061636/bt2633Isup2.hkl

e-64-00o12-Isup2.hkl (85.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES