Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o18. doi: 10.1107/S1600536807060953

(E)-3-(2-Chloro-3,3,3-trifluoro­prop-1-en­yl)-2,2-dimethyl-N,N-diphenyl­cyclo­propane­carboxamide

Fan-Yong Yan a,*, Dong-Qing Liu a
PMCID: PMC2914980  PMID: 21200743

Abstract

The title compound, C21H19ClF3NO, was synthesized from 3-[(E)-2-chloro-3,3,3-trifluoro­prop-1-en­yl]-2,2-dimethyl­cyclo­propane­carboxylic acid and diphenyl­amine. The propenyl and carboxamide substituents lie on the same side of the cyclo­propane ring plane, with the two methyl substituents on either side of the plane. The phenyl rings of the carboxamide are inclined at an angle of 84.6 (3)° to one another. The F atoms are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For the preparation of the title compound, see: Liu et al. (2006). For the insecticidal properties of related compounds, see: Punja (1981).graphic file with name e-64-00o18-scheme1.jpg

Experimental

Crystal data

  • C21H19ClF3NO

  • M r = 393.82

  • Monoclinic, Inline graphic

  • a = 9.247 (6) Å

  • b = 21.443 (14) Å

  • c = 10.025 (7) Å

  • β = 99.068 (11)°

  • V = 1963 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 294 (2) K

  • 0.22 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.951, T max = 0.960

  • 11179 measured reflections

  • 4030 independent reflections

  • 2379 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.00

  • 4030 reflections

  • 274 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060953/sj2421sup1.cif

e-64-00o18-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060953/sj2421Isup2.hkl

e-64-00o18-Isup2.hkl (197.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation (No. 20376059)

supplementary crystallographic information

Comment

3-((E)-2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl cyclopropanecarboxylic acid is a very important intermediate in the preparation of tefluthrinan a useful insecticide controlling a wide range of soil insect pests in maize, sugar beet, and other crops (Punja, 1981). Diphenylamine is also a structure which has bioactivity. We reasoned that a structure containing both of these bioactive components may show enhanced insecticidal activity and prepared the title compound (I), whose structure is repoerted here Fig. 1.

The the propenyl and carboxamide substituents lie on the same side of the cyclopropane ring plane, with the two methyl substituents on either side of the plane. The benzene rings of the carboxamide are inclined at 95.4 (3)° to one another. The crystal packing of (I) is shown in Fig. 2.

Experimental

The title compound was prepared according to the method of Liu et al. (2006). The product was recrystallized from methanol and ethyl acetate (5:1, v/v) over 3 days at ambient temperature, giving colourless single crystals of (I).

Refinement

H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined using riding model with Uiso(H) = 1.2Ueq(carrier). The fluorine atoms of the trifluoromethyl group were disordered over two conformations. The occupancy factor for the major component refined to 0.56 (3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal structure of (I), viewed along the a axis.

Crystal data

C21H19ClF3NO F000 = 816
Mr = 393.82 Dx = 1.333 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2995 reflections
a = 9.247 (6) Å θ = 2.2–24.7º
b = 21.443 (14) Å µ = 0.23 mm1
c = 10.025 (7) Å T = 294 (2) K
β = 99.068 (11)º Prism, colourles
V = 1963 (2) Å3 0.22 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4030 independent reflections
Radiation source: fine-focus sealed tube 2379 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.034
T = 294(2) K θmax = 26.5º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 1997) h = −11→10
Tmin = 0.951, Tmax = 0.960 k = −20→26
11179 measured reflections l = −12→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.119   w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4369P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
4030 reflections Δρmax = 0.30 e Å3
274 parameters Δρmin = −0.32 e Å3
60 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.52632 (8) 0.07861 (4) 0.13621 (8) 0.0975 (3)
F1 0.732 (2) 0.0017 (7) 0.0236 (16) 0.111 (4) 0.44 (3)
F2 0.9287 (12) 0.0254 (10) 0.1498 (12) 0.096 (3) 0.44 (3)
F3 0.823 (2) 0.0915 (7) 0.0041 (15) 0.122 (3) 0.44 (3)
F1' 0.7705 (16) −0.0077 (4) 0.0400 (14) 0.103 (3) 0.56 (3)
F2' 0.9394 (7) 0.0532 (8) 0.1380 (10) 0.094 (2) 0.56 (3)
F3' 0.7669 (19) 0.0895 (6) −0.0073 (10) 0.123 (3) 0.56 (3)
O1 1.00435 (15) 0.11409 (7) 0.53022 (16) 0.0659 (4)
N1 0.96418 (16) 0.19188 (7) 0.67253 (17) 0.0483 (4)
C1 0.7965 (3) 0.04904 (14) 0.0946 (3) 0.0799 (8)
C2 0.7085 (2) 0.06733 (10) 0.1994 (2) 0.0600 (6)
C3 0.7634 (2) 0.07596 (10) 0.3275 (2) 0.0560 (5)
H3 0.8630 0.0683 0.3528 0.067*
C4 0.6825 (2) 0.09642 (9) 0.4335 (2) 0.0542 (5)
H4 0.5822 0.1103 0.4003 0.065*
C5 0.7013 (2) 0.06512 (9) 0.5698 (2) 0.0535 (5)
C6 0.7573 (2) 0.13142 (9) 0.5584 (2) 0.0544 (5)
H6 0.6969 0.1637 0.5914 0.065*
C7 0.8048 (3) 0.01108 (11) 0.5998 (3) 0.0745 (7)
H7A 0.7580 −0.0264 0.5624 0.112*
H7B 0.8311 0.0065 0.6958 0.112*
H7C 0.8913 0.0186 0.5605 0.112*
C8 0.5658 (3) 0.06042 (12) 0.6365 (3) 0.0760 (7)
H8A 0.5011 0.0945 0.6071 0.114*
H8B 0.5935 0.0621 0.7328 0.114*
H8C 0.5168 0.0217 0.6117 0.114*
C9 0.9165 (2) 0.14478 (10) 0.5816 (2) 0.0522 (5)
C10 1.1194 (2) 0.19815 (9) 0.7161 (2) 0.0473 (5)
C11 1.2001 (2) 0.14777 (11) 0.7713 (2) 0.0565 (5)
H11 1.1545 0.1098 0.7811 0.068*
C12 1.3491 (3) 0.15412 (13) 0.8119 (2) 0.0683 (7)
H12 1.4040 0.1202 0.8489 0.082*
C13 1.4170 (3) 0.21036 (14) 0.7978 (3) 0.0739 (7)
H13 1.5177 0.2142 0.8236 0.089*
C14 1.3366 (3) 0.26020 (13) 0.7462 (3) 0.0740 (7)
H14 1.3822 0.2984 0.7387 0.089*
C15 1.1871 (2) 0.25455 (10) 0.7048 (2) 0.0621 (6)
H15 1.1326 0.2888 0.6693 0.074*
C16 0.8725 (2) 0.24001 (9) 0.7137 (2) 0.0444 (5)
C17 0.7857 (2) 0.27642 (9) 0.6197 (2) 0.0521 (5)
H17 0.7830 0.2689 0.5280 0.063*
C18 0.7031 (2) 0.32397 (10) 0.6614 (3) 0.0636 (6)
H18 0.6440 0.3480 0.5974 0.076*
C19 0.7068 (2) 0.33616 (11) 0.7943 (3) 0.0666 (7)
H19 0.6507 0.3684 0.8212 0.080*
C20 0.7929 (3) 0.30110 (12) 0.8887 (3) 0.0686 (7)
H20 0.7960 0.3098 0.9800 0.082*
C21 0.8759 (2) 0.25253 (11) 0.8494 (2) 0.0588 (6)
H21 0.9337 0.2284 0.9142 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0740 (4) 0.1102 (6) 0.0929 (5) 0.0004 (4) −0.0339 (4) 0.0028 (4)
F1 0.105 (6) 0.125 (6) 0.095 (4) −0.004 (4) −0.010 (4) −0.058 (5)
F2 0.079 (3) 0.134 (7) 0.074 (3) 0.000 (4) 0.005 (3) −0.020 (5)
F3 0.135 (7) 0.135 (5) 0.104 (5) −0.029 (5) 0.041 (5) 0.025 (4)
F1' 0.103 (5) 0.094 (3) 0.112 (5) −0.001 (3) 0.013 (4) −0.025 (3)
F2' 0.081 (2) 0.128 (6) 0.076 (3) −0.022 (3) 0.0197 (18) −0.023 (4)
F3' 0.140 (7) 0.161 (5) 0.070 (3) −0.007 (4) 0.021 (4) 0.033 (3)
O1 0.0450 (8) 0.0741 (10) 0.0785 (11) 0.0020 (7) 0.0097 (7) −0.0341 (9)
N1 0.0402 (8) 0.0436 (9) 0.0607 (10) −0.0005 (7) 0.0063 (7) −0.0123 (8)
C1 0.090 (2) 0.089 (2) 0.0554 (16) −0.0193 (17) −0.0049 (15) −0.0049 (16)
C2 0.0611 (13) 0.0561 (13) 0.0569 (14) −0.0085 (11) −0.0086 (11) 0.0024 (11)
C3 0.0467 (11) 0.0594 (13) 0.0579 (14) −0.0005 (10) −0.0041 (10) −0.0032 (11)
C4 0.0409 (10) 0.0512 (12) 0.0669 (14) 0.0016 (9) −0.0023 (10) −0.0055 (11)
C5 0.0501 (12) 0.0486 (12) 0.0617 (14) −0.0026 (10) 0.0081 (10) −0.0088 (11)
C6 0.0424 (11) 0.0460 (12) 0.0740 (15) 0.0006 (9) 0.0068 (10) −0.0165 (10)
C7 0.0812 (17) 0.0595 (15) 0.0812 (17) 0.0102 (13) 0.0081 (13) 0.0081 (13)
C8 0.0708 (16) 0.0765 (17) 0.0849 (18) −0.0165 (13) 0.0252 (13) −0.0172 (14)
C9 0.0468 (11) 0.0495 (12) 0.0599 (13) −0.0007 (10) 0.0071 (10) −0.0109 (11)
C10 0.0410 (10) 0.0492 (12) 0.0520 (12) 0.0002 (9) 0.0080 (9) −0.0095 (10)
C11 0.0550 (12) 0.0571 (13) 0.0557 (13) 0.0045 (11) 0.0039 (10) −0.0044 (11)
C12 0.0585 (14) 0.0866 (18) 0.0575 (14) 0.0222 (13) 0.0017 (11) −0.0091 (13)
C13 0.0442 (12) 0.102 (2) 0.0748 (17) −0.0020 (14) 0.0063 (12) −0.0263 (15)
C14 0.0519 (14) 0.0751 (17) 0.0971 (19) −0.0140 (13) 0.0184 (13) −0.0202 (15)
C15 0.0514 (12) 0.0518 (13) 0.0837 (16) −0.0025 (10) 0.0128 (11) −0.0073 (12)
C16 0.0417 (10) 0.0407 (11) 0.0521 (12) −0.0068 (9) 0.0111 (9) −0.0072 (9)
C17 0.0576 (12) 0.0478 (12) 0.0521 (12) 0.0015 (10) 0.0120 (10) 0.0005 (10)
C18 0.0583 (13) 0.0469 (13) 0.0854 (18) 0.0058 (11) 0.0109 (12) 0.0011 (12)
C19 0.0548 (13) 0.0531 (14) 0.097 (2) −0.0060 (11) 0.0264 (13) −0.0219 (14)
C20 0.0665 (15) 0.0822 (17) 0.0622 (15) −0.0136 (14) 0.0256 (12) −0.0277 (13)
C21 0.0568 (13) 0.0690 (15) 0.0508 (13) −0.0025 (11) 0.0087 (10) −0.0044 (11)

Geometric parameters (Å, °)

Cl1—C2 1.721 (2) C8—H8A 0.9600
F1—C1 1.324 (8) C8—H8B 0.9600
F2—C1 1.357 (7) C8—H8C 0.9600
F3—C1 1.334 (8) C10—C15 1.375 (3)
F1'—C1 1.340 (7) C10—C11 1.378 (3)
F2'—C1 1.328 (6) C11—C12 1.381 (3)
F3'—C1 1.336 (7) C11—H11 0.9300
O1—C9 1.221 (2) C12—C13 1.377 (4)
N1—C9 1.385 (3) C12—H12 0.9300
N1—C16 1.437 (2) C13—C14 1.357 (4)
N1—C10 1.439 (2) C13—H13 0.9300
C1—C2 1.480 (4) C14—C15 1.385 (3)
C2—C3 1.317 (3) C14—H14 0.9300
C3—C4 1.460 (3) C15—H15 0.9300
C3—H3 0.9300 C16—C17 1.380 (3)
C4—C5 1.508 (3) C16—C21 1.382 (3)
C4—C6 1.529 (3) C17—C18 1.378 (3)
C4—H4 0.9800 C17—H17 0.9300
C5—C7 1.502 (3) C18—C19 1.353 (3)
C5—C8 1.514 (3) C18—H18 0.9300
C5—C6 1.523 (3) C19—C20 1.363 (3)
C6—C9 1.481 (3) C19—H19 0.9300
C6—H6 0.9800 C20—C21 1.387 (3)
C7—H7A 0.9600 C20—H20 0.9300
C7—H7B 0.9600 C21—H21 0.9300
C7—H7C 0.9600
C9—N1—C16 124.86 (16) C5—C8—H8A 109.5
C9—N1—C10 117.84 (16) C5—C8—H8B 109.5
C16—N1—C10 116.81 (15) H8A—C8—H8B 109.5
F1—C1—F3 105.7 (11) C5—C8—H8C 109.5
F2'—C1—F3' 106.3 (6) H8A—C8—H8C 109.5
F2'—C1—F1' 107.5 (6) H8B—C8—H8C 109.5
F3'—C1—F1' 106.0 (8) O1—C9—N1 120.42 (18)
F1—C1—F2 103.4 (8) O1—C9—C6 122.70 (19)
F3—C1—F2 106.5 (7) N1—C9—C6 116.76 (18)
F1—C1—C2 109.6 (8) C15—C10—C11 119.9 (2)
F2'—C1—C2 112.3 (5) C15—C10—N1 120.15 (18)
F3—C1—C2 118.7 (8) C11—C10—N1 119.98 (18)
F3'—C1—C2 107.6 (7) C10—C11—C12 119.6 (2)
F1'—C1—C2 116.6 (6) C10—C11—H11 120.2
F2—C1—C2 111.7 (6) C12—C11—H11 120.2
C3—C2—C1 124.0 (2) C13—C12—C11 120.4 (2)
C3—C2—Cl1 122.9 (2) C13—C12—H12 119.8
C1—C2—Cl1 113.06 (17) C11—C12—H12 119.8
C2—C3—C4 126.0 (2) C14—C13—C12 119.8 (2)
C2—C3—H3 117.0 C14—C13—H13 120.1
C4—C3—H3 117.0 C12—C13—H13 120.1
C3—C4—C5 121.75 (18) C13—C14—C15 120.5 (2)
C3—C4—C6 121.70 (18) C13—C14—H14 119.8
C5—C4—C6 60.22 (14) C15—C14—H14 119.8
C3—C4—H4 114.2 C10—C15—C14 119.9 (2)
C5—C4—H4 114.2 C10—C15—H15 120.1
C6—C4—H4 114.2 C14—C15—H15 120.1
C7—C5—C4 120.27 (19) C17—C16—C21 118.89 (19)
C7—C5—C8 113.9 (2) C17—C16—N1 121.07 (18)
C4—C5—C8 116.37 (19) C21—C16—N1 119.96 (18)
C7—C5—C6 121.44 (19) C18—C17—C16 120.2 (2)
C4—C5—C6 60.57 (14) C18—C17—H17 119.9
C8—C5—C6 114.21 (18) C16—C17—H17 119.9
C9—C6—C5 120.64 (17) C19—C18—C17 120.8 (2)
C9—C6—C4 122.29 (18) C19—C18—H18 119.6
C5—C6—C4 59.21 (14) C17—C18—H18 119.6
C9—C6—H6 114.5 C18—C19—C20 119.9 (2)
C5—C6—H6 114.5 C18—C19—H19 120.0
C4—C6—H6 114.5 C20—C19—H19 120.0
C5—C7—H7A 109.5 C19—C20—C21 120.4 (2)
C5—C7—H7B 109.5 C19—C20—H20 119.8
H7A—C7—H7B 109.5 C21—C20—H20 119.8
C5—C7—H7C 109.5 C16—C21—C20 119.8 (2)
H7A—C7—H7C 109.5 C16—C21—H21 120.1
H7B—C7—H7C 109.5 C20—C21—H21 120.1
F1—C1—C2—C3 131.3 (10) C16—N1—C9—C6 −19.7 (3)
F2'—C1—C2—C3 −11.5 (9) C10—N1—C9—C6 168.66 (18)
F3—C1—C2—C3 −107.2 (10) C5—C6—C9—O1 47.4 (3)
F3'—C1—C2—C3 −128.0 (8) C4—C6—C9—O1 −23.3 (3)
F1'—C1—C2—C3 113.2 (8) C5—C6—C9—N1 −128.5 (2)
F2—C1—C2—C3 17.3 (11) C4—C6—C9—N1 160.74 (19)
F1—C1—C2—Cl1 −50.5 (10) C9—N1—C10—C15 126.5 (2)
F2'—C1—C2—Cl1 166.7 (8) C16—N1—C10—C15 −45.8 (3)
F3—C1—C2—Cl1 70.9 (10) C9—N1—C10—C11 −54.5 (3)
F3'—C1—C2—Cl1 50.2 (8) C16—N1—C10—C11 133.2 (2)
F1'—C1—C2—Cl1 −68.6 (8) C15—C10—C11—C12 −1.5 (3)
F2—C1—C2—Cl1 −164.5 (11) N1—C10—C11—C12 179.52 (19)
C1—C2—C3—C4 177.4 (2) C10—C11—C12—C13 0.2 (3)
Cl1—C2—C3—C4 −0.7 (3) C11—C12—C13—C14 1.3 (4)
C2—C3—C4—C5 134.6 (2) C12—C13—C14—C15 −1.4 (4)
C2—C3—C4—C6 −153.1 (2) C11—C10—C15—C14 1.3 (3)
C3—C4—C5—C7 −0.4 (3) N1—C10—C15—C14 −179.7 (2)
C6—C4—C5—C7 −111.4 (2) C13—C14—C15—C10 0.2 (4)
C3—C4—C5—C8 −144.8 (2) C9—N1—C16—C17 −53.0 (3)
C6—C4—C5—C8 104.2 (2) C10—N1—C16—C17 118.7 (2)
C3—C4—C5—C6 111.0 (2) C9—N1—C16—C21 130.3 (2)
C7—C5—C6—C9 −2.2 (3) C10—N1—C16—C21 −58.1 (2)
C4—C5—C6—C9 −111.7 (2) C21—C16—C17—C18 −0.6 (3)
C8—C5—C6—C9 140.5 (2) N1—C16—C17—C18 −177.38 (17)
C7—C5—C6—C4 109.5 (2) C16—C17—C18—C19 0.7 (3)
C8—C5—C6—C4 −107.8 (2) C17—C18—C19—C20 −0.1 (3)
C3—C4—C6—C9 −2.1 (3) C18—C19—C20—C21 −0.6 (3)
C5—C4—C6—C9 109.0 (2) C17—C16—C21—C20 −0.1 (3)
C3—C4—C6—C5 −111.1 (2) N1—C16—C21—C20 176.72 (18)
C16—N1—C9—O1 164.25 (19) C19—C20—C21—C16 0.7 (3)
C10—N1—C9—O1 −7.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2421).

References

  1. Bruker (1997). SADABS, SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Liu, D.-Q., Feng, Y.-Q., Liu, D.-W. & Zhang, S.-S. (2006). Acta Cryst E62, o1747–o1748.
  3. Punja, N. (1981). European Patent EP 0 031 199.
  4. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060953/sj2421sup1.cif

e-64-00o18-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060953/sj2421Isup2.hkl

e-64-00o18-Isup2.hkl (197.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES