Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o20. doi: 10.1107/S160053680706134X

1-(1,3-Benzothia­zol-2-yl)-3-benzoyl­thio­urea

Uzma Yunus a,*, Muhammad Kalim Tahir a, Moazzam Hussain Bhatti a, Saqib Ali b, Wai-Yeung Wong c
PMCID: PMC2914982  PMID: 21200765

Abstract

The title compound, C15H11N3OS2, was synthesized from benzoyl thio­cyanate and 2-amino­benzothia­zole in dry acetone. The thio­urea group is in the thio­amide form. The mol­ecules are stabilized by two inter­molecular C—H⋯S and C—H⋯O hydrogen bonds. Intra­molecular N—H⋯O hydrogen bonding results in a pseudo-S(6) planar ring with dihedral angles of 11.23 and 11.91° with the benzothiazole ring system and the phenyl ring, respectively.

Related literature

For related literature see: Büyükgüngör et al. (2004); del Campo et al. (2002); Chen et al. (2003); D’hooghe et al. (2005); Koketsu & Ishihara (2006); Morales et al. (2000); Rodríguez-Fernández et al. (2005); Yamin & Hassan (2004); Yunus et al. (2007); Zeng et al. (2003).graphic file with name e-64-00o20-scheme1.jpg

Experimental

Crystal data

  • C15H11N3OS2

  • M r = 313.39

  • Monoclinic, Inline graphic

  • a = 12.4402 (8) Å

  • b = 5.8608 (4) Å

  • c = 19.7240 (13) Å

  • β = 90.223 (1)°

  • V = 1438.06 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.933, T max = 1.000 (expected range = 0.866–0.928)

  • 8487 measured reflections

  • 3508 independent reflections

  • 2724 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.102

  • S = 1.04

  • 3508 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706134X/bh2150sup1.cif

e-64-00o20-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706134X/bh2150Isup2.hkl

e-64-00o20-Isup2.hkl (172KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1 0.86 1.86 2.5878 (17) 142
C1—H1A⋯S2i 0.93 2.84 3.4017 (17) 120
C5—H5A⋯O1ii 0.93 2.57 3.470 (2) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

supplementary crystallographic information

Comment

Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as antiviral, antibacterial, antifungal, antitubercular, herbicidal and insecticidal (Koketsu & Ishihara, 2006). Thioureas are also widely used as precursors or intermediates towards the syntheisis of a variety of heterocyclic compounds (Zeng et al.2003; D'hooghe, et al. 2005). Among thiourea derivatives acylthiourea with potential donor atoms (O and S) have been found to display remarkably rich coordination chemistry. Such coordination compounds of thiourea have been studied for different biological systems (Rodríguez-Fernández et al. 2005). In recent years some attention has also been paid for potential use of acylthioureas as highly selective reagents for the enrichment and separation of metal cations (del Campo et al. 2002). The condensation of acyl / aroyl thiocyanates with primary amine affords 1,3-disubstituted thioureas in excellent yield in a single step. However, our attempt to synthesize thiourea derivative by treating benzoyl thiocyanate with 2-aminothiazole resulted in a fused 1,3,5-triazine instead of the expected thiourea product (Yunus et al. 2007). This observation prompted us to explore the outcome of the reaction with 2-aminothiazole derivatives such as 2-aminobenzothiazole. The reaction of the benzoyl thiocyanate with 2-aminobenzothiazole yielded the title compound (I) which is reported here.

The title compound crystallizes in the thioamide form. The conformation of the molecule with respect to the carbonyl and thiocarbonyl part is nearly planar as reflected by the torsion angles O1—C7—N1—C8, C7—N1—C8—S2 and C7—N1—C8—N2 of -0.42(°), -179.58(°) and -0.06(°) respectively. The benzoyl and benzothiazole groups are trans and cis, respectively, to the S atom across the thiourea C—N bonds (Figure 1 and Table 1). The C8—S2 and C7—O1 bonds show a typical double bond character with bond lengths of 1.6578 (15) and 1.2179 (19) Å respectively, closely related to other thiourea derivatives (Yamin & Hassan, 2004). All of the C—N bonds of thiourea fragment C7—N1, C8—N1, C8—N2 and C9—N2 are in the range 1.3933 (19) - 1.338 (2) Å, intermediate between those expected for single and double C—N bonds (1.47 and 1.27 Å respectively). Among these C—N bonds the C7—N1 is the longest indicating Csp2-Nsp2 single bond while C8—N2 is the shortest bond with more double bond character. This further demonstrate that there is π conjugation only along S2—C8—N2 system but not along O1—C7—N1 and C7—N1—C8 as found in 1-(3-methoxybenzoyl)-3,3-diethylthiourea (Morales et al., 2000). The bond lengths in the benzothizole ring system are normal and agree with the corresponding values found in 2-(benzothiazole-2-yliminomethyl)-6-methoxyphenol and N,N-(2-benzothia-zole)(2-pyridylmethyl)amine (Büyükgüngör et al. 2004; Chen et al. 2003). The bond length C9—N2 is very close to the value determined for the 2-(benzothiazole-2-yliminomethyl)-6-methoxyphenol suggesting the existence of a delocalized double bond in the benzothiazole moiety (Büyükgüngör et al. 2004). All bond lengths and angles confirm the sp2 hybridization for all C and N atoms of the benzothiazole ring with all C—C and C—N bond lengths intermediate between single and double bonds. The benzothiazole ring bonded to N2 is essentially planar and inclined at an angle -11.23(°) with respect to the plane of thiourea moiety. Similarly the phenyl ring bonded to C7 is at an angle of 11.91(°) with respect to the plane formed by the thiourea moiety.

The molecule is further stabilized by intermolecular and intramolecular hydrogen bonding. There are two types of intermolecular C1—H1A···S2i and C5—H5A···O1ii [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1] hydrogen bonds. The intramolecular N2—H2B···O1 hydrogen bond is also observed. As a result, a pseudo six membered (O1—C7—N1—C8—N2···H2B) ring is formed.

Experimental

A mixture of ammonium thiocyanate (26 mmol) and benzoyl chloride (26 mmol) in dry acetone (60 ml) was stirred for 30 min. Then 2-aminobenzothiazole (26 mmol) was added and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured in an acidified cold water. The resulting yellow solid was filtered and washed with cold acetone. The title compound (I) was obtained as suitable single crystals for X-Ray analysis after recrystallization of the solid from an 1:1 ethanol-dichloromethane mixture.

Refinement

H atoms were placed in idealized positions and refined using a riding model approximation. Bond lengths were fixed to 0.86 (amine NH) or 0.93 Å (aromatic CH). Isotropic displacement parameters were fixed to Uiso(H) = 1.2Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C15H11N3OS2 F000 = 648
Mr = 313.39 Dx = 1.447 Mg m3
Monoclinic, P2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 8487 reflections
a = 12.4402 (8) Å θ = 2.6–28.3º
b = 5.8608 (4) Å µ = 0.37 mm1
c = 19.7240 (13) Å T = 293 (2) K
β = 90.223 (1)º Block, pale-yellow
V = 1438.06 (16) Å3 0.32 × 0.26 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3508 independent reflections
Radiation source: fine-focus sealed tube 2724 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.019
T = 293(2) K θmax = 28.3º
φ and ω scans θmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 1999) h = −16→16
Tmin = 0.933, Tmax = 1.000 k = −7→7
8487 measured reflections l = −19→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.102   w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2538P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3508 reflections Δρmax = 0.31 e Å3
190 parameters Δρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.21573 (13) 0.0594 (3) 0.53895 (8) 0.0416 (4)
H1A 0.1480 0.0792 0.5197 0.050*
C2 0.23408 (16) −0.1206 (3) 0.58247 (9) 0.0515 (4)
H2A 0.1785 −0.2203 0.5932 0.062*
C3 0.33485 (18) −0.1525 (4) 0.61000 (10) 0.0602 (5)
H3A 0.3473 −0.2749 0.6390 0.072*
C4 0.41698 (17) −0.0051 (4) 0.59497 (11) 0.0646 (5)
H4A 0.4848 −0.0280 0.6137 0.078*
C5 0.39901 (14) 0.1779 (3) 0.55189 (9) 0.0529 (5)
H5A 0.4547 0.2781 0.5419 0.063*
C6 0.29787 (12) 0.2116 (3) 0.52370 (8) 0.0378 (3)
C7 0.28504 (12) 0.4117 (3) 0.47818 (8) 0.0380 (3)
C8 0.14589 (12) 0.6519 (3) 0.42051 (8) 0.0372 (3)
C9 0.22056 (12) 0.9776 (3) 0.35659 (7) 0.0354 (3)
C10 0.29090 (13) 1.2734 (3) 0.30503 (8) 0.0388 (3)
C11 0.36820 (14) 1.4337 (3) 0.28664 (9) 0.0472 (4)
H11A 0.4382 1.4225 0.3030 0.057*
C12 0.33920 (16) 1.6082 (3) 0.24397 (9) 0.0517 (4)
H12A 0.3902 1.7159 0.2313 0.062*
C13 0.23408 (17) 1.6266 (3) 0.21919 (9) 0.0551 (5)
H13A 0.2164 1.7450 0.1898 0.066*
C14 0.15669 (15) 1.4723 (3) 0.23769 (9) 0.0514 (4)
H14A 0.0867 1.4855 0.2214 0.062*
C15 0.18525 (13) 1.2952 (3) 0.28139 (8) 0.0412 (4)
N1 0.18011 (10) 0.4716 (2) 0.46078 (7) 0.0395 (3)
H1B 0.1303 0.3861 0.4770 0.047*
N2 0.22510 (10) 0.7819 (2) 0.39602 (7) 0.0385 (3)
H2B 0.2889 0.7372 0.4064 0.046*
N3 0.30872 (10) 1.0881 (2) 0.34739 (7) 0.0397 (3)
O1 0.36174 (9) 0.5195 (2) 0.45724 (6) 0.0482 (3)
S1 0.10503 (3) 1.08096 (8) 0.31634 (2) 0.04440 (13)
S2 0.01565 (3) 0.69188 (9) 0.40697 (2) 0.05128 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0415 (8) 0.0417 (9) 0.0415 (8) 0.0026 (7) 0.0017 (7) −0.0018 (7)
C2 0.0636 (11) 0.0424 (10) 0.0486 (10) −0.0033 (8) 0.0075 (8) 0.0042 (8)
C3 0.0734 (13) 0.0535 (11) 0.0536 (11) 0.0096 (10) −0.0028 (10) 0.0161 (9)
C4 0.0549 (11) 0.0708 (13) 0.0680 (13) 0.0098 (10) −0.0134 (9) 0.0184 (11)
C5 0.0423 (9) 0.0610 (12) 0.0553 (11) 0.0008 (8) −0.0066 (8) 0.0146 (9)
C6 0.0389 (8) 0.0385 (8) 0.0362 (8) 0.0038 (6) 0.0000 (6) 0.0004 (6)
C7 0.0358 (7) 0.0394 (8) 0.0388 (8) 0.0009 (6) −0.0025 (6) 0.0003 (7)
C8 0.0360 (8) 0.0391 (8) 0.0366 (8) 0.0027 (6) −0.0012 (6) −0.0027 (6)
C9 0.0359 (7) 0.0363 (8) 0.0339 (7) 0.0054 (6) −0.0023 (6) −0.0005 (6)
C10 0.0422 (8) 0.0398 (8) 0.0343 (8) 0.0048 (7) 0.0034 (6) 0.0000 (6)
C11 0.0471 (9) 0.0494 (10) 0.0451 (9) −0.0003 (8) 0.0056 (7) 0.0020 (8)
C12 0.0631 (11) 0.0460 (10) 0.0460 (10) −0.0016 (8) 0.0126 (8) 0.0040 (8)
C13 0.0740 (13) 0.0474 (10) 0.0441 (10) 0.0154 (9) 0.0092 (9) 0.0106 (8)
C14 0.0511 (10) 0.0554 (11) 0.0476 (10) 0.0141 (8) 0.0005 (8) 0.0088 (8)
C15 0.0442 (9) 0.0414 (9) 0.0381 (8) 0.0061 (7) 0.0022 (7) 0.0018 (7)
N1 0.0324 (6) 0.0398 (7) 0.0461 (7) −0.0007 (5) −0.0018 (5) 0.0073 (6)
N2 0.0323 (6) 0.0392 (7) 0.0441 (7) 0.0031 (5) −0.0024 (5) 0.0046 (6)
N3 0.0380 (7) 0.0413 (7) 0.0399 (7) 0.0021 (6) −0.0018 (5) 0.0030 (6)
O1 0.0351 (6) 0.0515 (7) 0.0581 (7) −0.0035 (5) −0.0043 (5) 0.0143 (6)
S1 0.0367 (2) 0.0473 (3) 0.0491 (2) 0.00442 (17) −0.00595 (17) 0.00779 (18)
S2 0.0328 (2) 0.0624 (3) 0.0586 (3) 0.00376 (19) −0.00173 (18) 0.0142 (2)

Geometric parameters (Å, °)

C1—C2 1.379 (2) C9—N3 1.287 (2)
C1—C6 1.390 (2) C9—N2 1.387 (2)
C1—H1A 0.9300 C9—S1 1.7476 (15)
C2—C3 1.377 (3) C10—N3 1.387 (2)
C2—H2A 0.9300 C10—C11 1.393 (2)
C3—C4 1.371 (3) C10—C15 1.399 (2)
C3—H3A 0.9300 C11—C12 1.372 (2)
C4—C5 1.386 (3) C11—H11A 0.9300
C4—H4A 0.9300 C12—C13 1.398 (3)
C5—C6 1.388 (2) C12—H12A 0.9300
C5—H5A 0.9300 C13—C14 1.371 (3)
C6—C7 1.486 (2) C13—H13A 0.9300
C7—O1 1.2179 (19) C14—C15 1.395 (2)
C7—N1 1.3933 (19) C14—H14A 0.9300
C8—N2 1.338 (2) C15—S1 1.7471 (17)
C8—N1 1.388 (2) N1—H1B 0.8600
C8—S2 1.6578 (15) N2—H2B 0.8600
C2—C1—C6 120.37 (16) N3—C10—C11 125.14 (15)
C2—C1—H1A 119.8 N3—C10—C15 114.84 (14)
C6—C1—H1A 119.8 C11—C10—C15 120.01 (15)
C3—C2—C1 119.85 (18) C12—C11—C10 118.83 (17)
C3—C2—H2A 120.1 C12—C11—H11A 120.6
C1—C2—H2A 120.1 C10—C11—H11A 120.6
C4—C3—C2 120.47 (18) C11—C12—C13 121.01 (18)
C4—C3—H3A 119.8 C11—C12—H12A 119.5
C2—C3—H3A 119.8 C13—C12—H12A 119.5
C3—C4—C5 120.11 (18) C14—C13—C12 120.85 (17)
C3—C4—H4A 119.9 C14—C13—H13A 119.6
C5—C4—H4A 119.9 C12—C13—H13A 119.6
C4—C5—C6 119.95 (18) C13—C14—C15 118.55 (17)
C4—C5—H5A 120.0 C13—C14—H14A 120.7
C6—C5—H5A 120.0 C15—C14—H14A 120.7
C5—C6—C1 119.24 (15) C14—C15—C10 120.72 (16)
C5—C6—C7 116.71 (15) C14—C15—S1 129.37 (14)
C1—C6—C7 124.06 (14) C10—C15—S1 109.89 (12)
O1—C7—N1 121.35 (14) C8—N1—C7 128.15 (13)
O1—C7—C6 122.16 (14) C8—N1—H1B 115.9
N1—C7—C6 116.49 (14) C7—N1—H1B 115.9
N2—C8—N1 114.57 (13) C8—N2—C9 130.20 (13)
N2—C8—S2 125.60 (12) C8—N2—H2B 114.9
N1—C8—S2 119.83 (12) C9—N2—H2B 114.9
N3—C9—N2 117.53 (13) C9—N3—C10 110.14 (13)
N3—C9—S1 117.47 (12) C15—S1—C9 87.62 (7)
N2—C9—S1 124.97 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O1 0.86 1.86 2.5878 (17) 142
C1—H1A···S2i 0.93 2.84 3.4017 (17) 120
C5—H5A···O1ii 0.93 2.57 3.470 (2) 162

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2150).

References

  1. Bruker (1999). SMART (Version 5.0), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Büyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414–o1416.
  3. Campo, R. del, Criado, J. J., García, E., Hermosa, M. R., Jiménez-Sánchez, A., Manzano, J. L., Monte, E., Rodríguez-Fernández, E. & Sanz, F. (2002). J. Inorg. Biochem.89, 74–82. [DOI] [PubMed]
  4. Chen, Z.-F., Tang, Y.-Z., Shi, S.-M., Wang, X.-W., Liang, H. & Yu, K.-B. (2003). Acta Cryst. E59, o1461–o1463.
  5. D’hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem.70, 227–232. [DOI] [PubMed]
  6. Koketsu, M. & Ishihara, H. (2006). Curr. Org. Synth.3, 439–455.
  7. Morales, A. D., Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Márquez, H. & Pomés Hernández, R. (2000). Acta Cryst. C56, 503–504. [DOI] [PubMed]
  8. Rodríguez-Fernández, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E. & Criado, J. J. (2005). J. Inorg. Biochem.99, 1558–1572. [DOI] [PubMed]
  9. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  10. Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.
  11. Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.
  12. Zeng, R.-S., Zou, J.-P., Zhi, S.-J. & Shen, Q. (2003). Org. Lett.5, 1657–1659. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706134X/bh2150sup1.cif

e-64-00o20-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706134X/bh2150Isup2.hkl

e-64-00o20-Isup2.hkl (172KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES