Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o33. doi: 10.1107/S1600536807060941

Ethyl 2-acetyl­hydrazono-2-phenyl­acetate

Liang-Zhong Xu a,*, Xu Yi a, Guang-Wei An a, Gong-Sheng Zhang a, Chun-Fang Li a
PMCID: PMC2914993  PMID: 21200890

Abstract

The title compound, C12H14N2O3, was synthesized as an inter­mediate for the synthesis of metamitron. The benzene ring forms dihedral angles of 86.3 (2) and 10.0 (3)° with the ethyl group and the acetyl­imino plane, respectively. The crystal structure involves inter­molecular C—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Glaser et al. (1993); Javier et al. (2006); Pan & Gao (2007).graphic file with name e-64-00o33-scheme1.jpg

Experimental

Crystal data

  • C12H14N2O3

  • M r = 234.25

  • Orthorhombic, Inline graphic

  • a = 9.3039 (19) Å

  • b = 15.752 (3) Å

  • c = 17.129 (3) Å

  • V = 2510.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 (2) K

  • 0.32 × 0.22 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi 1995) T min = 0.972, T max = 0.991

  • 18227 measured reflections

  • 2206 independent reflections

  • 1870 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.110

  • S = 1.09

  • 2206 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060941/hg2352sup1.cif

e-64-00o33-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060941/hg2352Isup2.hkl

e-64-00o33-Isup2.hkl (108.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 2.03 2.8737 (16) 165
C9—H9B⋯O3i 0.97 2.55 3.2023 (19) 124

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Metamitron(Trade name: Goltix) is a widely used herbicide for the control of grass and broad-leaved weeds in sugar and red beets, fodder beet, and certain strawberry varieties. The dose rates for metamitron are 0.35–4.2 kg active ingredient/ha for all crops. The currently used weed control strategy in sugarbeet involves a mixture of herbicides(phenmedipham, ethofumesate, metamitron, chloridazon etc) to control dicotyledonus weeds. 70% wettable powderand has been used for the control of morel goosefoot chickweed Lamium barbatum etc. Metamitron can be used before and after the plantingis. It can be applied to the control of the entire crop growing period with better efficacy when it cooperate with others herbicides and pesticides(Javier et al., 2006). The title compound (I) was synthesized as an intermediate for the synthesis of metamitron. We report here the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Glaser et al., 1993). The benzene ring plane forms dihedral angles of 86.3 (2)° and 10.0 (3)° with the ethyl plane (O1/O2/C7/C8/C9) and the acetylimino plane (O3/N1/N2/C4/C5/C6/C7/C11/C12), respectively. The crystal structure is stabilized by intermolecular C–H–O and N–H–O hydrogen bonds.

Experimental

Ethyl benzoylformate 12.1 g (6.8 mmol), was dissolved in 20 ml e thanol in a flask equipped with stirrer and reflux condenser. Acethydrazide 5.1 g(6.8 mmol) was slowly added from a dropping-funnel during 30 minutes while maintaining the temperature at 75–80°C for eight hours. Evaporation of portion of the solvent and cooling down the remaining solution in ice water yielded white crystals out after three hours (11.9 g, yield 78.9%) (Pan et al., 2007). Single crystals suitable for X-ray measurement were obtained by recrystallization from petroleum ether at room temperature.

Refinement

All H atoms were found on difference maps. All H atoms were positioned geometrically [N—H = 0.86 Å(NH). C—H = 0.93Å (CH), C—H = 0.97Å (CH2). C—H = 0.96Å (CH3). Uiso(H) = 1.5 x (Methyl) or Uiso(H) = 1.2 x (other groups)].

Figures

Fig. 1.

Fig. 1.

View of the title compound (I), with displacement ellipsoids drawn at the 35% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the molecule of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H14N2O3 F000 = 992
Mr = 234.25 Dx = 1.240 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2998 reflections
a = 9.3039 (19) Å θ = 2.3–21.9º
b = 15.752 (3) Å µ = 0.09 mm1
c = 17.129 (3) Å T = 153 (2) K
V = 2510.3 (8) Å3 Block, colorless
Z = 8 0.32 × 0.22 × 0.10 mm

Data collection

Rigaku R-AXIS Rapid IP area-detector diffractometer 2206 independent reflections
Radiation source: Rotating Anode 1870 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 153(2) K θmax = 25.0º
ω Oscillation scans θmin = 3.2º
Absorption correction: multi-scan(ABSCOR; Higashi 1995) h = −11→11
Tmin = 0.972, Tmax = 0.991 k = −18→18
18227 measured reflections l = −20→20

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037   w = 1/[σ2(Fo2) + (0.0576P)2 + 0.4358P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110 (Δ/σ)max = 0.002
S = 1.09 Δρmax = 0.23 e Å3
2206 reflections Δρmin = −0.12 e Å3
156 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.030 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.98377 (12) 0.11865 (7) 0.70415 (6) 0.0676 (4)
O2 0.84719 (10) 0.19284 (6) 0.62123 (6) 0.0504 (3)
O3 1.14302 (12) −0.00717 (6) 0.44126 (6) 0.0628 (3)
N1 1.16667 (12) 0.17432 (7) 0.55542 (6) 0.0456 (3)
N2 1.11668 (13) 0.09905 (7) 0.52543 (6) 0.0485 (3)
H2A 1.0369 0.0782 0.5420 0.058*
C1 1.26329 (16) 0.33271 (9) 0.60630 (8) 0.0514 (4)
H1B 1.3104 0.3071 0.5646 0.062*
C2 1.30914 (19) 0.41054 (10) 0.63304 (9) 0.0616 (4)
H2B 1.3875 0.4369 0.6096 0.074*
C3 1.2401 (2) 0.44963 (10) 0.69408 (10) 0.0682 (5)
H3A 1.2713 0.5024 0.7117 0.082*
C4 1.1246 (2) 0.41045 (10) 0.72922 (10) 0.0675 (5)
H4A 1.0776 0.4368 0.7706 0.081*
C5 1.07824 (17) 0.33195 (9) 0.70302 (8) 0.0538 (4)
H5A 1.0005 0.3057 0.7271 0.065*
C6 1.14696 (14) 0.29215 (8) 0.64113 (7) 0.0416 (3)
C7 1.09697 (14) 0.20901 (8) 0.61165 (7) 0.0405 (3)
C8 0.97033 (15) 0.16787 (8) 0.65146 (7) 0.0422 (3)
C9 0.71683 (16) 0.15866 (11) 0.65747 (9) 0.0574 (4)
H9A 0.7085 0.1788 0.7108 0.069*
H9B 0.7202 0.0971 0.6582 0.069*
C10 0.5936 (2) 0.18798 (17) 0.61093 (13) 0.1044 (9)
H10A 0.5062 0.1667 0.6334 0.157*
H10B 0.6029 0.1675 0.5584 0.157*
H10C 0.5914 0.2489 0.6107 0.157*
C11 1.19254 (16) 0.05777 (9) 0.46999 (8) 0.0494 (4)
C12 1.33423 (19) 0.09243 (12) 0.44570 (12) 0.0758 (5)
H12A 1.3687 0.0617 0.4011 0.114*
H12B 1.4015 0.0867 0.4878 0.114*
H12C 1.3240 0.1513 0.4325 0.114*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0664 (7) 0.0730 (7) 0.0634 (6) −0.0111 (6) −0.0089 (5) 0.0261 (6)
O2 0.0413 (6) 0.0526 (6) 0.0575 (6) 0.0010 (4) 0.0043 (4) 0.0092 (4)
O3 0.0619 (7) 0.0551 (6) 0.0715 (7) −0.0139 (5) 0.0159 (5) −0.0241 (5)
N1 0.0468 (6) 0.0391 (6) 0.0508 (6) −0.0053 (5) 0.0006 (5) −0.0052 (5)
N2 0.0485 (7) 0.0406 (6) 0.0564 (7) −0.0102 (5) 0.0089 (5) −0.0100 (5)
C1 0.0531 (8) 0.0463 (8) 0.0548 (8) −0.0067 (6) 0.0027 (7) −0.0031 (6)
C2 0.0647 (10) 0.0519 (9) 0.0682 (10) −0.0166 (8) 0.0005 (8) −0.0013 (7)
C3 0.0787 (12) 0.0473 (9) 0.0785 (11) −0.0158 (8) −0.0044 (9) −0.0145 (8)
C4 0.0750 (11) 0.0591 (9) 0.0683 (10) −0.0048 (8) 0.0055 (8) −0.0229 (8)
C5 0.0539 (9) 0.0521 (8) 0.0553 (8) −0.0055 (7) 0.0032 (7) −0.0076 (7)
C6 0.0435 (7) 0.0372 (7) 0.0442 (7) 0.0002 (5) −0.0062 (5) −0.0004 (5)
C7 0.0406 (7) 0.0372 (7) 0.0436 (7) −0.0002 (5) −0.0036 (5) 0.0007 (5)
C8 0.0473 (8) 0.0376 (7) 0.0416 (7) −0.0023 (5) −0.0030 (6) −0.0020 (6)
C9 0.0470 (9) 0.0641 (9) 0.0610 (9) −0.0050 (7) 0.0153 (7) −0.0018 (7)
C10 0.0464 (11) 0.174 (3) 0.0925 (14) −0.0096 (13) −0.0001 (10) 0.0327 (15)
C11 0.0495 (8) 0.0437 (7) 0.0551 (8) −0.0041 (6) 0.0056 (6) −0.0057 (6)
C12 0.0617 (10) 0.0691 (11) 0.0964 (13) −0.0160 (8) 0.0270 (9) −0.0234 (10)

Geometric parameters (Å, °)

O1—C8 1.1964 (16) C4—H4A 0.9300
O2—C8 1.3173 (16) C5—C6 1.3878 (19)
O2—C9 1.4650 (17) C5—H5A 0.9300
O3—C11 1.2251 (16) C6—C7 1.4787 (18)
N1—C7 1.2832 (17) C7—C8 1.5078 (19)
N1—N2 1.3733 (15) C9—C10 1.471 (2)
N2—C11 1.3501 (18) C9—H9A 0.9700
N2—H2A 0.8600 C9—H9B 0.9700
C1—C2 1.377 (2) C10—H10A 0.9600
C1—C6 1.391 (2) C10—H10B 0.9600
C1—H1B 0.9300 C10—H10C 0.9600
C2—C3 1.373 (2) C11—C12 1.486 (2)
C2—H2B 0.9300 C12—H12A 0.9600
C3—C4 1.378 (2) C12—H12B 0.9600
C3—H3A 0.9300 C12—H12C 0.9600
C4—C5 1.384 (2)
C8—O2—C9 116.34 (11) C6—C7—C8 118.16 (11)
C7—N1—N2 118.50 (11) O1—C8—O2 125.51 (13)
C11—N2—N1 120.12 (11) O1—C8—C7 122.55 (12)
C11—N2—H2A 119.9 O2—C8—C7 111.94 (11)
N1—N2—H2A 119.9 O2—C9—C10 107.46 (13)
C2—C1—C6 120.50 (14) O2—C9—H9A 110.2
C2—C1—H1B 119.8 C10—C9—H9A 110.2
C6—C1—H1B 119.8 O2—C9—H9B 110.2
C3—C2—C1 120.52 (15) C10—C9—H9B 110.2
C3—C2—H2B 119.7 H9A—C9—H9B 108.5
C1—C2—H2B 119.7 C9—C10—H10A 109.5
C2—C3—C4 119.78 (15) C9—C10—H10B 109.5
C2—C3—H3A 120.1 H10A—C10—H10B 109.5
C4—C3—H3A 120.1 C9—C10—H10C 109.5
C3—C4—C5 120.10 (15) H10A—C10—H10C 109.5
C3—C4—H4A 120.0 H10B—C10—H10C 109.5
C5—C4—H4A 120.0 O3—C11—N2 119.22 (13)
C4—C5—C6 120.51 (15) O3—C11—C12 121.86 (13)
C4—C5—H5A 119.7 N2—C11—C12 118.92 (13)
C6—C5—H5A 119.7 C11—C12—H12A 109.5
C5—C6—C1 118.59 (12) C11—C12—H12B 109.5
C5—C6—C7 121.07 (12) H12A—C12—H12B 109.5
C1—C6—C7 120.33 (12) C11—C12—H12C 109.5
N1—C7—C6 118.33 (12) H12A—C12—H12C 109.5
N1—C7—C8 123.46 (11) H12B—C12—H12C 109.5
C7—N1—N2—C11 −175.43 (12) C1—C6—C7—N1 2.49 (19)
C6—C1—C2—C3 −0.5 (2) C5—C6—C7—C8 −0.87 (19)
C1—C2—C3—C4 0.4 (3) C1—C6—C7—C8 −179.93 (12)
C2—C3—C4—C5 0.0 (3) C9—O2—C8—O1 1.9 (2)
C3—C4—C5—C6 −0.3 (3) C9—O2—C8—C7 −178.08 (11)
C4—C5—C6—C1 0.2 (2) N1—C7—C8—O1 85.17 (18)
C4—C5—C6—C7 −178.90 (14) C6—C7—C8—O1 −92.28 (16)
C2—C1—C6—C5 0.2 (2) N1—C7—C8—O2 −94.86 (15)
C2—C1—C6—C7 179.29 (13) C6—C7—C8—O2 87.69 (14)
N2—N1—C7—C6 −177.00 (11) C8—O2—C9—C10 −174.94 (15)
N2—N1—C7—C8 5.56 (19) N1—N2—C11—O3 −176.56 (13)
C5—C6—C7—N1 −178.46 (12) N1—N2—C11—C12 3.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3i 0.86 2.03 2.8737 (16) 165
C9—H9B···O3i 0.97 2.55 3.2023 (19) 124

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2352).

References

  1. Glaser, R., Chen, G. S. & Barnes, C. L. (1993). J. Org. Chem.58, 7446–7455.
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Javier, M., Sergio, A. & Salvador, G. (2006). Anal. Chim. Acta, 565, 255–260.
  4. Pan, Z. W. & Gao, H. X. (2007). Pesticides, 46, 166–167.
  5. Rigaku (2004). RAPID-AUTO Version 3.0. Rigaku Corporation, Takyo, Japan.
  6. Sheldrick, G. M. (2001). SHELXTL Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060941/hg2352sup1.cif

e-64-00o33-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060941/hg2352Isup2.hkl

e-64-00o33-Isup2.hkl (108.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES