Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o39. doi: 10.1107/S1600536807062642

2,8-Dichloro-6H,12H-5,11-ethano­dibenzo[b,f][1,5]diazo­cine

Masoud Faroughi a, Andrew C Try a,*, Peter Turner b
PMCID: PMC2914998  PMID: 21200913

Abstract

In the mol­ecule of the title compound, C16H14Cl2N2, the ethano-strapped 2,8-dichloro analogue of Tröger’s base, the dihedral angle between the two benzene rings is 87.01 (3)°.

Related literature

For related literature, see: Tröger (1887); Hamada & Mukai (1996); Ishida et al. (2005). For related structures, see: Spielman (1935); Larson & Wilcox (1986); Solano et al. (2005); Faroughi et al. (2006a ,b ); Faroughi, Try, Klepetko & Turner (2007); Faroughi, Try & Turner (2007).graphic file with name e-64-00o39-scheme1.jpg

Experimental

Crystal data

  • C16H14Cl2N2

  • M r = 305.19

  • Triclinic, Inline graphic

  • a = 6.8801 (11) Å

  • b = 10.1951 (17) Å

  • c = 10.2466 (16) Å

  • α = 85.320 (3)°

  • β = 84.956 (2)°

  • γ = 76.470 (3)°

  • V = 694.70 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 150 (2) K

  • 0.63 × 0.44 × 0.41 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: Gaussian (XPREP; Coppens et al., 1965; Siemens, 1995) T min = 0.773, T max = 0.869

  • 6876 measured reflections

  • 3188 independent reflections

  • 2992 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.089

  • S = 1.06

  • 3188 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062642/hk2402sup1.cif

e-64-00o39-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062642/hk2402Isup2.hkl

e-64-00o39-Isup2.hkl (156.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant.

supplementary crystallographic information

Comment

Tröger's base was first prepared in 1887 (Tröger, 1887) and its structure was elucidated until over 30 years latter (Spielman, 1935). The strucural assignment was confirmed by X-ray crystallography (Larson & Wilcox, 1986). Since then large number of related compounds have been reported and the dihedral angle, between the least-squares planes through the aromatic rings, has been measured across a range of simple dibenzo Tröger's base analogues and found to lie between 82° (Solano et al., 2005) and 108° (Faroughi et al., 2006b). A common structural feature in all of these compounds is the methano-strapped diazocine bridge. The conversion of methano-strapped compounds to ethano-strapped analogues of Tröger's base have been reported for 2,8-dimethyl- and 2,8-dimethoxy- (Hamada & Mukai, 1996) as well as 2,8-dibromo- (Ishida et al., 2005; Faroughi, Try, Klepetko & Turner, 2007) substitution patterns. We have previously reported that the dihedral angle in methano-strapped 2,8-dibromo Tröger's base is 94.5° (Faroughi et al., 2006a) whilst the corresponding angle in the ethano-strapped 2,8-dibromo analogue is 86.1° (Faroughi, Try, Klepetko & Turner, 2007). In the present case, the dihedral angle of ethano-strapped 2,8-dichloro Tröger's base (I), whose molecular structure is shown in Fig. 1, was also found to be reduced [87.01 (3)°] in comparison with the methano-strapped analogue, which has a dihedral angle of 95.6° (Faroughi, Try & Turner et al., 2007).

Experimental

The title compound was prepared according to the literature procedure (Hamada & Mukai, 1996) in 72% yield. Single crystals of (I) were produced from slow evaporation of a dichloromethane solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Synthetic scheme for the synthesis of (I) showing the numbering system used in naming the compound.

Crystal data

C16H14Cl2N2 Z = 2
Mr = 305.19 F000 = 316
Triclinic, P1 Dx = 1.459 Mg m3
Hall symbol: -P 1 Melting point = 454–455 K
a = 6.8801 (11) Å Mo Kα radiation λ = 0.71073 Å
b = 10.1951 (17) Å Cell parameters from 925 reflections
c = 10.2466 (16) Å θ = 3.5–27.9º
α = 85.320 (3)º µ = 0.46 mm1
β = 84.956 (2)º T = 150 (2) K
γ = 76.470 (3)º Prism, colorless
V = 694.70 (19) Å3 0.63 × 0.44 × 0.41 mm

Data collection

Bruker SMART 1000 CCD diffractometer 3188 independent reflections
Radiation source: fine-focus sealed tube 2992 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 150(2) K θmax = 28.3º
ω scans θmin = 2.0º
Absorption correction: Gaussian(XPREP; Coppens et al., 1965; Siemens, 1995) h = −8→9
Tmin = 0.773, Tmax = 0.869 k = −13→13
6876 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.089   w = 1/[σ2(Fo2) + (0.051P)2 + 0.1729P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
3188 reflections Δρmax = 0.34 e Å3
181 parameters Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.33151 (5) 0.87520 (3) 1.11085 (3) 0.03317 (10)
Cl2 0.19414 (5) 1.02485 (3) 0.31142 (3) 0.03303 (10)
N1 0.43135 (15) 0.61940 (11) 0.81861 (11) 0.0288 (2)
N2 0.19355 (15) 0.52439 (10) 0.65450 (10) 0.0249 (2)
C1 0.24125 (17) 0.67773 (12) 0.88354 (11) 0.0256 (2)
C2 0.23827 (19) 0.77730 (13) 0.96964 (13) 0.0300 (3)
H2 0.3590 0.8039 0.9806 0.036*
C3 0.0642 (2) 0.83825 (12) 1.03940 (12) 0.0297 (3)
H3 0.0645 0.9057 1.0981 0.036*
C4 −0.11108 (18) 0.79898 (12) 1.02196 (11) 0.0261 (2)
C5 −0.11437 (17) 0.70205 (12) 0.93531 (11) 0.0242 (2)
H5 −0.2366 0.6777 0.9238 0.029*
C6 0.06195 (17) 0.64005 (11) 0.86481 (11) 0.0231 (2)
C7 0.04879 (17) 0.53679 (12) 0.76854 (11) 0.0247 (2)
H7A 0.0654 0.4472 0.8169 0.030*
H7B −0.0876 0.5605 0.7367 0.030*
C8 0.19502 (17) 0.64895 (11) 0.57911 (11) 0.0229 (2)
C9 0.05736 (18) 0.68840 (12) 0.48295 (11) 0.0250 (2)
H9 −0.0354 0.6346 0.4732 0.030*
C10 0.05307 (18) 0.80449 (12) 0.40135 (11) 0.0267 (2)
H10 −0.0423 0.8310 0.3370 0.032*
C11 0.19158 (18) 0.88103 (12) 0.41608 (11) 0.0256 (2)
C12 0.32586 (18) 0.84588 (12) 0.51236 (12) 0.0265 (2)
H12 0.4170 0.9009 0.5220 0.032*
C13 0.32901 (17) 0.73018 (12) 0.59568 (11) 0.0250 (2)
C14 0.48177 (18) 0.69776 (14) 0.69929 (13) 0.0317 (3)
H14A 0.6103 0.6474 0.6582 0.038*
H14B 0.5042 0.7841 0.7254 0.038*
C15 0.47175 (18) 0.47337 (13) 0.80467 (13) 0.0324 (3)
H15A 0.4103 0.4303 0.8826 0.039*
H15B 0.6183 0.4358 0.8017 0.039*
C16 0.39027 (19) 0.43836 (13) 0.68131 (13) 0.0319 (3)
H16A 0.4863 0.4477 0.6052 0.038*
H16B 0.3797 0.3428 0.6914 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.03691 (18) 0.03002 (17) 0.03158 (17) −0.00488 (12) −0.00344 (12) −0.00303 (12)
Cl2 0.0492 (2) 0.02418 (16) 0.02644 (16) −0.01157 (13) −0.00413 (12) 0.00531 (11)
N1 0.0231 (5) 0.0311 (5) 0.0321 (5) −0.0078 (4) −0.0082 (4) 0.0091 (4)
N2 0.0270 (5) 0.0203 (5) 0.0266 (5) −0.0053 (4) −0.0019 (4) 0.0024 (4)
C1 0.0256 (5) 0.0257 (6) 0.0264 (5) −0.0078 (4) −0.0101 (4) 0.0080 (4)
C2 0.0314 (6) 0.0291 (6) 0.0333 (6) −0.0125 (5) −0.0160 (5) 0.0065 (5)
C3 0.0403 (7) 0.0237 (6) 0.0279 (6) −0.0100 (5) −0.0145 (5) 0.0035 (4)
C4 0.0316 (6) 0.0228 (5) 0.0231 (5) −0.0051 (4) −0.0069 (4) 0.0042 (4)
C5 0.0269 (5) 0.0242 (5) 0.0232 (5) −0.0094 (4) −0.0072 (4) 0.0047 (4)
C6 0.0264 (5) 0.0219 (5) 0.0223 (5) −0.0085 (4) −0.0075 (4) 0.0055 (4)
C7 0.0261 (5) 0.0239 (5) 0.0258 (5) −0.0097 (4) −0.0039 (4) 0.0020 (4)
C8 0.0253 (5) 0.0198 (5) 0.0231 (5) −0.0048 (4) −0.0006 (4) 0.0001 (4)
C9 0.0291 (5) 0.0244 (6) 0.0231 (5) −0.0089 (4) −0.0026 (4) −0.0028 (4)
C10 0.0326 (6) 0.0266 (6) 0.0213 (5) −0.0064 (5) −0.0058 (4) −0.0006 (4)
C11 0.0333 (6) 0.0203 (5) 0.0222 (5) −0.0060 (4) 0.0001 (4) 0.0011 (4)
C12 0.0277 (5) 0.0252 (6) 0.0277 (6) −0.0096 (4) −0.0012 (4) 0.0009 (4)
C13 0.0235 (5) 0.0254 (6) 0.0262 (5) −0.0064 (4) −0.0033 (4) 0.0019 (4)
C14 0.0240 (5) 0.0366 (7) 0.0358 (7) −0.0120 (5) −0.0081 (5) 0.0104 (5)
C15 0.0252 (6) 0.0308 (6) 0.0376 (7) −0.0019 (5) −0.0051 (5) 0.0099 (5)
C16 0.0311 (6) 0.0236 (6) 0.0367 (6) −0.0012 (5) 0.0003 (5) 0.0053 (5)

Geometric parameters (Å, °)

Cl1—C4 1.7477 (13) C7—H7B 0.9900
Cl2—C11 1.7471 (12) C8—C9 1.3968 (16)
N1—C1 1.4334 (16) C8—C13 1.4043 (16)
N1—C15 1.4657 (17) C9—C10 1.3882 (17)
N1—C14 1.4659 (16) C9—H9 0.9500
N2—C8 1.4332 (14) C10—C11 1.3901 (17)
N2—C7 1.4608 (15) C10—H10 0.9500
N2—C16 1.4653 (16) C11—C12 1.3795 (17)
C1—C2 1.3937 (18) C12—C13 1.3956 (16)
C1—C6 1.4077 (15) C12—H12 0.9500
C2—C3 1.3802 (19) C13—C14 1.5223 (16)
C2—H2 0.9500 C14—H14A 0.9900
C3—C4 1.3865 (17) C14—H14B 0.9900
C3—H3 0.9500 C15—C16 1.5269 (19)
C4—C5 1.3866 (17) C15—H15A 0.9900
C5—C6 1.3980 (17) C15—H15B 0.9900
C5—H5 0.9500 C16—H16A 0.9900
C6—C7 1.5230 (16) C16—H16B 0.9900
C7—H7A 0.9900
C1—N1—C15 115.51 (10) C10—C9—C8 121.47 (11)
C1—N1—C14 113.66 (10) C10—C9—H9 119.3
C15—N1—C14 114.24 (11) C8—C9—H9 119.3
C8—N2—C7 114.43 (9) C9—C10—C11 118.43 (11)
C8—N2—C16 115.99 (9) C9—C10—H10 120.8
C7—N2—C16 113.67 (9) C11—C10—H10 120.8
C2—C1—C6 119.43 (11) C12—C11—C10 121.14 (11)
C2—C1—N1 116.75 (10) C12—C11—Cl2 119.53 (9)
C6—C1—N1 123.82 (11) C10—C11—Cl2 119.33 (9)
C3—C2—C1 121.62 (11) C11—C12—C13 120.58 (11)
C3—C2—H2 119.2 C11—C12—H12 119.7
C1—C2—H2 119.2 C13—C12—H12 119.7
C2—C3—C4 118.57 (11) C12—C13—C8 119.04 (10)
C2—C3—H3 120.7 C12—C13—C14 117.56 (10)
C4—C3—H3 120.7 C8—C13—C14 123.39 (10)
C3—C4—C5 121.36 (12) N1—C14—C13 116.80 (10)
C3—C4—Cl1 118.71 (10) N1—C14—H14A 108.1
C5—C4—Cl1 119.92 (9) C13—C14—H14A 108.1
C4—C5—C6 120.10 (10) N1—C14—H14B 108.1
C4—C5—H5 120.0 C13—C14—H14B 108.1
C6—C5—H5 120.0 H14A—C14—H14B 107.3
C5—C6—C1 118.91 (11) N1—C15—C16 112.65 (10)
C5—C6—C7 117.90 (10) N1—C15—H15A 109.1
C1—C6—C7 123.18 (11) C16—C15—H15A 109.1
N2—C7—C6 116.32 (9) N1—C15—H15B 109.1
N2—C7—H7A 108.2 C16—C15—H15B 109.1
C6—C7—H7A 108.2 H15A—C15—H15B 107.8
N2—C7—H7B 108.2 N2—C16—C15 112.95 (11)
C6—C7—H7B 108.2 N2—C16—H16A 109.0
H7A—C7—H7B 107.4 C15—C16—H16A 109.0
C9—C8—C13 119.27 (10) N2—C16—H16B 109.0
C9—C8—N2 117.29 (10) C15—C16—H16B 109.0
C13—C8—N2 123.43 (10) H16A—C16—H16B 107.8
C15—N1—C1—C2 140.54 (11) C16—N2—C8—C13 −39.77 (16)
C14—N1—C1—C2 −84.57 (13) C13—C8—C9—C10 1.50 (18)
C15—N1—C1—C6 −39.47 (15) N2—C8—C9—C10 −177.27 (10)
C14—N1—C1—C6 95.42 (14) C8—C9—C10—C11 0.77 (18)
C6—C1—C2—C3 1.36 (18) C9—C10—C11—C12 −2.32 (18)
N1—C1—C2—C3 −178.64 (11) C9—C10—C11—Cl2 178.13 (9)
C1—C2—C3—C4 −0.33 (18) C10—C11—C12—C13 1.56 (18)
C2—C3—C4—C5 −0.88 (18) Cl2—C11—C12—C13 −178.90 (9)
C2—C3—C4—Cl1 179.63 (9) C11—C12—C13—C8 0.77 (18)
C3—C4—C5—C6 1.03 (17) C11—C12—C13—C14 179.84 (11)
Cl1—C4—C5—C6 −179.48 (8) C9—C8—C13—C12 −2.26 (17)
C4—C5—C6—C1 0.03 (16) N2—C8—C13—C12 176.43 (10)
C4—C5—C6—C7 −178.54 (10) C9—C8—C13—C14 178.73 (11)
C2—C1—C6—C5 −1.19 (17) N2—C8—C13—C14 −2.57 (18)
N1—C1—C6—C5 178.82 (10) C1—N1—C14—C13 −54.36 (15)
C2—C1—C6—C7 177.30 (10) C15—N1—C14—C13 81.12 (14)
N1—C1—C6—C7 −2.70 (17) C12—C13—C14—N1 153.32 (12)
C8—N2—C7—C6 −54.43 (13) C8—C13—C14—N1 −27.67 (18)
C16—N2—C7—C6 82.00 (12) C1—N1—C15—C16 86.66 (13)
C5—C6—C7—N2 150.29 (10) C14—N1—C15—C16 −47.97 (14)
C1—C6—C7—N2 −28.21 (15) C8—N2—C16—C15 86.98 (12)
C7—N2—C8—C9 −85.65 (13) C7—N2—C16—C15 −48.75 (14)
C16—N2—C8—C9 138.96 (11) N1—C15—C16—N2 −39.74 (14)
C7—N2—C8—C13 95.62 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2402).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  3. Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett.48, 6548–6551.
  4. Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674–o3675.
  5. Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893–o3894.
  6. Faroughi, M., Try, A. C. & Turner, P. (2007). Acta Cryst. E63, o2695.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. The Xtal3.6 System University of Western Australia.
  9. Hamada, Y. & Mukai, S. (1996). Tetrahedron Asymmetry, 7, 2671–2674.
  10. Ishida, Y., Ito, H., Mori, D. & Saigo, K. (2005). Tetrahedron Lett.46, 109–112.
  11. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  12. Larson, S. B. & Wilcox, C. S. (1986). Acta Cryst. C42, 224–227.
  13. Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
  14. Siemens (1995). SMART, SAINT and XPREP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  15. Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517.
  16. Spielman, M. A. (1935). J. Am. Chem. Soc.57, 583–585.
  17. Tröger, J. (1887). J. Prakt. Chem.36, 225–245.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062642/hk2402sup1.cif

e-64-00o39-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062642/hk2402Isup2.hkl

e-64-00o39-Isup2.hkl (156.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES