Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):o47. doi: 10.1107/S1600536807061995

Diammonium biphenyl-4,4′-disulfonate

Graham Smith a,*, Urs D Wermuth a, Peter C Healy b
PMCID: PMC2915005  PMID: 21200922

Abstract

In the title salt, 2NH4 +·C12H8O6S2 2−, the dianion has crystallographic inversion symmetry. A three-dimensional framework is formed from primary hydrogen-bonded sheet structures comprising ammonium N—H⋯Osulfonate inter­actions and is linked peripherally through the biphenyl residues of the anions. This open framework has 43 Å3 solvent-accessible voids.

Related literature

Biphenyl-4,4′-disulfonate clathrate structures may be found in: Russell et al. (1997); Swift, Pivovar et al. (1998); Swift, Reynolds & Ward (1998); Swift & Ward (2000); Pivovar et al. (2001).graphic file with name e-64-00o47-scheme1.jpg

Experimental

Crystal data

  • 2NH4 +·C12H8O6S2 2−

  • M r = 348.39

  • Monoclinic, Inline graphic

  • a = 14.778 (2) Å

  • b = 7.4138 (12) Å

  • c = 7.6647 (13) Å

  • β = 96.667 (13)°

  • V = 834.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 297 (2) K

  • 0.40 × 0.30 × 0.11 mm

Data collection

  • Rigaku AFC 7R four-circle diffractometer

  • Absorption correction: ψ scan (TEXSAN for Windows; Molecular Structure Corporation, 1999) T min = 0.874, T max = 0.963

  • 2129 measured reflections

  • 1909 independent reflections

  • 1030 reflections with I > 2σ(I)

  • R int = 0.037

  • 3 standard reflections frequency: 150 min intensity decay: 1.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.172

  • S = 0.86

  • 1909 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061995/ng2396sup1.cif

e-64-00o47-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061995/ng2396Isup2.hkl

e-64-00o47-Isup2.hkl (54.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O11i 0.91 (5) 1.96 (4) 2.861 (5) 172 (4)
N1—H12⋯O11ii 0.80 (5) 2.18 (5) 2.922 (5) 153 (5)
N1—H12⋯O13iii 0.80 (5) 2.45 (5) 2.955 (4) 122 (4)
N1—H13⋯O13 0.91 (6) 1.96 (6) 2.841 (5) 162 (4)
N1—H14⋯O12iv 0.88 (5) 1.97 (5) 2.848 (5) 174 (4)
C2—H2⋯O11 0.95 2.48 2.873 (6) 105
C6—H6⋯O12v 0.95 2.33 3.243 (6) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The guanidinium salts of biphenyl-4,4'-disulfonic acid (BPDSH2) form two-dimensional hydrogen-bonded open-framework structures in which the guanidinium cations form sheets connected by BPDS pillars. (Russell et al., 1997). These structures may accommodate various molecular guest species, commonly aromatic hydrocarbons, giving crystalline clathrates of the type (Gu+)2 BPDS2-. nG (where G = the guest species) (Swift, Pivovar et al., 1998; Swift, Reynolds & Ward, 1998; Swift & Ward, 2000; Pivovar et al., 2001). Because it was considered that the ammonium salt of BPDSH2 might also have an open framework structure, we prepared crystals of anhydrous (NH4+)2 C12H8O6S22- (I) from an aqueous ammoniacal solution of the acid and the structure is reported here.

In (I), the planar anions have inversion symmetry coincident with crystallographic symmetry (Fig. 1). Each ammonium cation gives a total of five associations with sulfonate-O acceptors of the cation (Table 1) resulting in sheet structures which extend across the bc planes in the unit cell at a = 0. These sheets are linked across the a cell direction through the biphenyl residues of the BPDS anions, giving a three- dimensional framework structure (Fig. 2). There are 43 Å3 solvent accessible voids within the structure.

Experimental

Compound (I) was prepared by the room temperature interaction in a 2:1 stoichiometric ratio of ammonia as an aqueous solution with biphenyl-4,4'-disulfonic acid. Colourless crystal plates (m. p. >573 K) were obtained from the partial room temperature evaporation of this solution.

Refinement

The ammonium hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the refinement in calculated positions (C–H = 0.95 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom naming scheme for the BPDS anion in (I). Atoms of the inversion-related half of the compound are indicated by symmetry code (vi) (-x + 1, -y, -z + 1). The dashed lines represent the hydrogen bonds between the ammonium protons and the sulfonate-O acceptors.

Fig. 2.

Fig. 2.

A perspective view of the three-dimensional hydrogen-bonded framework structure of (I) with ammonium N–H–Osulfonate sheets interlinked by the biphenyl residues of the BPDS anions.

Crystal data

2N1H4+·C12H8O6S22– F000 = 364
Mr = 348.39 Dx = 1.387 Mg m3
Monoclinic, P21/c Melting point > 573 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 14.778 (2) Å Cell parameters from 25 reflections
b = 7.4138 (12) Å θ = 13.7–17.1º
c = 7.6647 (13) Å µ = 0.35 mm1
β = 96.667 (13)º T = 297 (2) K
V = 834.1 (2) Å3 Plate, colourless
Z = 2 0.40 × 0.30 × 0.11 mm

Data collection

Rigaku AFC 7R four-circle diffractometer Rint = 0.037
Radiation source: Rigaku rotating anode θmax = 27.5º
Monochromator: graphite θmin = 2.8º
T = 297(2) K h = −8→19
ω–2θ scans k = 0→9
Absorption correction: ψ scan(TEXSAN for Windows; Molecular Structure Corporation,1999) l = −9→9
Tmin = 0.874, Tmax = 0.963 3 standard reflections
2129 measured reflections every 150 min
1909 independent reflections intensity decay: 1.6%
1030 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172   w = 1/[σ2(Fo2) + (0.1P)2 + 0.8639P] where P = (Fo2 + 2Fc2)/3
S = 0.86 (Δ/σ)max < 0.001
1909 reflections Δρmax = 0.30 e Å3
116 parameters Δρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15898 (5) 0.00272 (12) 0.19165 (11) 0.0282 (2)
O11 0.15361 (18) −0.1393 (4) 0.0601 (3) 0.0415 (8)
O12 0.14295 (19) 0.1783 (4) 0.1126 (4) 0.0458 (9)
O13 0.10228 (17) −0.0332 (4) 0.3285 (3) 0.0442 (9)
C1 0.2732 (2) 0.0001 (5) 0.2931 (4) 0.0313 (9)
C2 0.3348 (3) −0.1181 (8) 0.2409 (8) 0.079 (2)
C3 0.4233 (3) −0.1161 (8) 0.3218 (8) 0.086 (2)
C4 0.4528 (2) 0.0004 (6) 0.4560 (5) 0.0383 (11)
C5 0.3888 (3) 0.1184 (8) 0.5045 (6) 0.0660 (18)
C6 0.3001 (3) 0.1182 (8) 0.4249 (7) 0.0664 (18)
N1 −0.0887 (3) 0.0292 (5) 0.2899 (5) 0.0376 (11)
H2 0.31710 −0.20180 0.14940 0.0940*
H3 0.46580 −0.19870 0.28270 0.1020*
H5 0.40600 0.20300 0.59550 0.0790*
H6 0.25740 0.20130 0.46240 0.0800*
H11 −0.107 (3) 0.055 (5) 0.175 (6) 0.039 (11)*
H12 −0.110 (3) 0.096 (7) 0.357 (6) 0.055 (15)*
H13 −0.027 (4) 0.035 (6) 0.299 (5) 0.055 (14)*
H14 −0.109 (3) −0.076 (7) 0.323 (6) 0.053 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0262 (4) 0.0305 (4) 0.0273 (4) −0.0015 (4) 0.0011 (3) 0.0018 (4)
O11 0.0439 (16) 0.0432 (15) 0.0345 (13) 0.0003 (13) −0.0073 (11) −0.0066 (12)
O12 0.0426 (16) 0.0346 (15) 0.0595 (17) 0.0035 (12) 0.0030 (13) 0.0109 (13)
O13 0.0284 (13) 0.073 (2) 0.0313 (13) −0.0046 (13) 0.0043 (10) 0.0096 (13)
C1 0.0245 (15) 0.0370 (17) 0.0324 (16) −0.0007 (17) 0.0030 (12) −0.0043 (18)
C2 0.042 (3) 0.089 (4) 0.097 (4) 0.024 (3) −0.026 (3) −0.067 (3)
C3 0.041 (3) 0.098 (4) 0.110 (4) 0.028 (3) −0.023 (3) −0.073 (4)
C4 0.0226 (17) 0.051 (2) 0.0404 (19) −0.0011 (19) 0.0003 (14) −0.010 (2)
C5 0.034 (2) 0.090 (4) 0.071 (3) 0.010 (2) −0.006 (2) −0.053 (3)
C6 0.031 (2) 0.090 (4) 0.075 (3) 0.016 (2) −0.007 (2) −0.054 (3)
N1 0.039 (2) 0.046 (2) 0.0285 (17) 0.0049 (16) 0.0073 (14) 0.0010 (16)

Geometric parameters (Å, °)

S1—O11 1.454 (3) C2—C3 1.381 (7)
S1—O12 1.444 (3) C3—C4 1.375 (7)
S1—O13 1.441 (3) C4—C5 1.371 (6)
S1—C1 1.775 (3) C4—C4i 1.477 (4)
N1—H14 0.88 (5) C5—C6 1.380 (6)
N1—H11 0.91 (5) C2—H2 0.9500
N1—H12 0.80 (5) C3—H3 0.9500
N1—H13 0.91 (6) C5—H5 0.9500
C1—C6 1.361 (6) C6—H6 0.9500
C1—C2 1.357 (6)
O11—S1—O12 111.65 (17) C1—C2—C3 119.6 (5)
O11—S1—O13 112.42 (16) C2—C3—C4 123.0 (5)
O11—S1—C1 105.58 (16) C3—C4—C5 115.8 (4)
O12—S1—O13 113.02 (17) C4i—C4—C5 121.6 (4)
O12—S1—C1 107.17 (17) C3—C4—C4i 122.7 (4)
O13—S1—C1 106.43 (15) C4—C5—C6 122.0 (5)
H12—N1—H14 101 (5) C1—C6—C5 120.6 (5)
H13—N1—H14 113 (4) C1—C2—H2 120.00
H11—N1—H14 113 (4) C3—C2—H2 120.00
H11—N1—H12 113 (4) C4—C3—H3 118.00
H11—N1—H13 104 (4) C2—C3—H3 119.00
H12—N1—H13 113 (4) C4—C5—H5 119.00
C2—C1—C6 119.1 (4) C6—C5—H5 119.00
S1—C1—C2 121.0 (3) C5—C6—H6 120.00
S1—C1—C6 120.0 (3) C1—C6—H6 120.00
O11—S1—C1—C2 0.7 (4) C1—C2—C3—C4 0.6 (9)
O11—S1—C1—C6 −179.5 (3) C2—C3—C4—C5 −0.9 (8)
O12—S1—C1—C2 −118.4 (4) C2—C3—C4—C4i 178.9 (5)
O12—S1—C1—C6 61.4 (4) C3—C4—C5—C6 0.8 (7)
O13—S1—C1—C2 120.4 (4) C4i—C4—C5—C6 −179.0 (5)
O13—S1—C1—C6 −59.8 (4) C3—C4—C4i—C3i −180.0 (5)
S1—C1—C2—C3 179.6 (4) C3—C4—C4i—C5i 0.2 (7)
C6—C1—C2—C3 −0.2 (8) C5—C4—C4i—C3i −0.2 (7)
S1—C1—C6—C5 −179.7 (4) C5—C4—C4i—C5i 180.0 (5)
C2—C1—C6—C5 0.1 (7) C4—C5—C6—C1 −0.5 (8)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H11···O11ii 0.91 (5) 1.96 (4) 2.861 (5) 172 (4)
N1—H12···O11iii 0.80 (5) 2.18 (5) 2.922 (5) 153 (5)
N1—H12···O13iv 0.80 (5) 2.45 (5) 2.955 (4) 122 (4)
N1—H13···O13 0.91 (6) 1.96 (6) 2.841 (5) 162 (4)
N1—H14···O12v 0.88 (5) 1.97 (5) 2.848 (5) 174 (4)
C2—H2···O11 0.95 2.48 2.873 (6) 105
C6—H6···O12vi 0.95 2.33 3.243 (6) 161

Symmetry codes: (ii) −x, −y, −z; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y, −z+1; (v) −x, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2396).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Molecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN for Windows MSC, The Woodlands, Texas, USA.
  3. Pivovar, A. M., Holman, K. T. & Ward, M. D. (2001). Chem. Mater.13, 3018–3031.
  4. Russell, V. A., Evans, C. C., Li, W. & Ward, M. D. (1997). Science, 276, 575–579. [DOI] [PubMed]
  5. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Swift, J. A., Pivovar, A. M., Reynolds, A. M. & Ward, M. D. (1998). J. Am. Chem. Soc.120, 5887–5894.
  8. Swift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater.10, 4159–4168.
  9. Swift, J. A. & Ward, M. D. (2000). Chem. Mater.12, 1501–1504.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061995/ng2396sup1.cif

e-64-00o47-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061995/ng2396Isup2.hkl

e-64-00o47-Isup2.hkl (54.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES