Abstract
In the title salt, 2NH4 +·C12H8O6S2 2−, the dianion has crystallographic inversion symmetry. A three-dimensional framework is formed from primary hydrogen-bonded sheet structures comprising ammonium N—H⋯Osulfonate interactions and is linked peripherally through the biphenyl residues of the anions. This open framework has 43 Å3 solvent-accessible voids.
Related literature
Biphenyl-4,4′-disulfonate clathrate structures may be found in: Russell et al. (1997 ▶); Swift, Pivovar et al. (1998 ▶); Swift, Reynolds & Ward (1998 ▶); Swift & Ward (2000 ▶); Pivovar et al. (2001 ▶).
Experimental
Crystal data
2NH4 +·C12H8O6S2 2−
M r = 348.39
Monoclinic,
a = 14.778 (2) Å
b = 7.4138 (12) Å
c = 7.6647 (13) Å
β = 96.667 (13)°
V = 834.1 (2) Å3
Z = 2
Mo Kα radiation
μ = 0.35 mm−1
T = 297 (2) K
0.40 × 0.30 × 0.11 mm
Data collection
Rigaku AFC 7R four-circle diffractometer
Absorption correction: ψ scan (TEXSAN for Windows; Molecular Structure Corporation, 1999 ▶) T min = 0.874, T max = 0.963
2129 measured reflections
1909 independent reflections
1030 reflections with I > 2σ(I)
R int = 0.037
3 standard reflections frequency: 150 min intensity decay: 1.6%
Refinement
R[F 2 > 2σ(F 2)] = 0.046
wR(F 2) = 0.172
S = 0.86
1909 reflections
116 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.30 e Å−3
Δρmin = −0.39 e Å−3
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999 ▶); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999 ▶); program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 ▶); molecular graphics: PLATON (Spek, 2003 ▶); software used to prepare material for publication: PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061995/ng2396sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061995/ng2396Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H11⋯O11i | 0.91 (5) | 1.96 (4) | 2.861 (5) | 172 (4) |
| N1—H12⋯O11ii | 0.80 (5) | 2.18 (5) | 2.922 (5) | 153 (5) |
| N1—H12⋯O13iii | 0.80 (5) | 2.45 (5) | 2.955 (4) | 122 (4) |
| N1—H13⋯O13 | 0.91 (6) | 1.96 (6) | 2.841 (5) | 162 (4) |
| N1—H14⋯O12iv | 0.88 (5) | 1.97 (5) | 2.848 (5) | 174 (4) |
| C2—H2⋯O11 | 0.95 | 2.48 | 2.873 (6) | 105 |
| C6—H6⋯O12v | 0.95 | 2.33 | 3.243 (6) | 161 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.
supplementary crystallographic information
Comment
The guanidinium salts of biphenyl-4,4'-disulfonic acid (BPDSH2) form two-dimensional hydrogen-bonded open-framework structures in which the guanidinium cations form sheets connected by BPDS pillars. (Russell et al., 1997). These structures may accommodate various molecular guest species, commonly aromatic hydrocarbons, giving crystalline clathrates of the type (Gu+)2 BPDS2-. nG (where G = the guest species) (Swift, Pivovar et al., 1998; Swift, Reynolds & Ward, 1998; Swift & Ward, 2000; Pivovar et al., 2001). Because it was considered that the ammonium salt of BPDSH2 might also have an open framework structure, we prepared crystals of anhydrous (NH4+)2 C12H8O6S22- (I) from an aqueous ammoniacal solution of the acid and the structure is reported here.
In (I), the planar anions have inversion symmetry coincident with crystallographic symmetry (Fig. 1). Each ammonium cation gives a total of five associations with sulfonate-O acceptors of the cation (Table 1) resulting in sheet structures which extend across the bc planes in the unit cell at a = 0. These sheets are linked across the a cell direction through the biphenyl residues of the BPDS anions, giving a three- dimensional framework structure (Fig. 2). There are 43 Å3 solvent accessible voids within the structure.
Experimental
Compound (I) was prepared by the room temperature interaction in a 2:1 stoichiometric ratio of ammonia as an aqueous solution with biphenyl-4,4'-disulfonic acid. Colourless crystal plates (m. p. >573 K) were obtained from the partial room temperature evaporation of this solution.
Refinement
The ammonium hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the refinement in calculated positions (C–H = 0.95 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
Molecular configuration and atom naming scheme for the BPDS anion in (I). Atoms of the inversion-related half of the compound are indicated by symmetry code (vi) (-x + 1, -y, -z + 1). The dashed lines represent the hydrogen bonds between the ammonium protons and the sulfonate-O acceptors.
Fig. 2.
A perspective view of the three-dimensional hydrogen-bonded framework structure of (I) with ammonium N–H–Osulfonate sheets interlinked by the biphenyl residues of the BPDS anions.
Crystal data
| 2N1H4+·C12H8O6S22– | F000 = 364 |
| Mr = 348.39 | Dx = 1.387 Mg m−3 |
| Monoclinic, P21/c | Melting point > 573 K |
| Hall symbol: -P 2ybc | Mo Kα radiation λ = 0.71073 Å |
| a = 14.778 (2) Å | Cell parameters from 25 reflections |
| b = 7.4138 (12) Å | θ = 13.7–17.1º |
| c = 7.6647 (13) Å | µ = 0.35 mm−1 |
| β = 96.667 (13)º | T = 297 (2) K |
| V = 834.1 (2) Å3 | Plate, colourless |
| Z = 2 | 0.40 × 0.30 × 0.11 mm |
Data collection
| Rigaku AFC 7R four-circle diffractometer | Rint = 0.037 |
| Radiation source: Rigaku rotating anode | θmax = 27.5º |
| Monochromator: graphite | θmin = 2.8º |
| T = 297(2) K | h = −8→19 |
| ω–2θ scans | k = 0→9 |
| Absorption correction: ψ scan(TEXSAN for Windows; Molecular Structure Corporation,1999) | l = −9→9 |
| Tmin = 0.874, Tmax = 0.963 | 3 standard reflections |
| 2129 measured reflections | every 150 min |
| 1909 independent reflections | intensity decay: 1.6% |
| 1030 reflections with I > 2σ(I) |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.172 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.8639P] where P = (Fo2 + 2Fc2)/3 |
| S = 0.86 | (Δ/σ)max < 0.001 |
| 1909 reflections | Δρmax = 0.30 e Å−3 |
| 116 parameters | Δρmin = −0.38 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.15898 (5) | 0.00272 (12) | 0.19165 (11) | 0.0282 (2) | |
| O11 | 0.15361 (18) | −0.1393 (4) | 0.0601 (3) | 0.0415 (8) | |
| O12 | 0.14295 (19) | 0.1783 (4) | 0.1126 (4) | 0.0458 (9) | |
| O13 | 0.10228 (17) | −0.0332 (4) | 0.3285 (3) | 0.0442 (9) | |
| C1 | 0.2732 (2) | 0.0001 (5) | 0.2931 (4) | 0.0313 (9) | |
| C2 | 0.3348 (3) | −0.1181 (8) | 0.2409 (8) | 0.079 (2) | |
| C3 | 0.4233 (3) | −0.1161 (8) | 0.3218 (8) | 0.086 (2) | |
| C4 | 0.4528 (2) | 0.0004 (6) | 0.4560 (5) | 0.0383 (11) | |
| C5 | 0.3888 (3) | 0.1184 (8) | 0.5045 (6) | 0.0660 (18) | |
| C6 | 0.3001 (3) | 0.1182 (8) | 0.4249 (7) | 0.0664 (18) | |
| N1 | −0.0887 (3) | 0.0292 (5) | 0.2899 (5) | 0.0376 (11) | |
| H2 | 0.31710 | −0.20180 | 0.14940 | 0.0940* | |
| H3 | 0.46580 | −0.19870 | 0.28270 | 0.1020* | |
| H5 | 0.40600 | 0.20300 | 0.59550 | 0.0790* | |
| H6 | 0.25740 | 0.20130 | 0.46240 | 0.0800* | |
| H11 | −0.107 (3) | 0.055 (5) | 0.175 (6) | 0.039 (11)* | |
| H12 | −0.110 (3) | 0.096 (7) | 0.357 (6) | 0.055 (15)* | |
| H13 | −0.027 (4) | 0.035 (6) | 0.299 (5) | 0.055 (14)* | |
| H14 | −0.109 (3) | −0.076 (7) | 0.323 (6) | 0.053 (14)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0262 (4) | 0.0305 (4) | 0.0273 (4) | −0.0015 (4) | 0.0011 (3) | 0.0018 (4) |
| O11 | 0.0439 (16) | 0.0432 (15) | 0.0345 (13) | 0.0003 (13) | −0.0073 (11) | −0.0066 (12) |
| O12 | 0.0426 (16) | 0.0346 (15) | 0.0595 (17) | 0.0035 (12) | 0.0030 (13) | 0.0109 (13) |
| O13 | 0.0284 (13) | 0.073 (2) | 0.0313 (13) | −0.0046 (13) | 0.0043 (10) | 0.0096 (13) |
| C1 | 0.0245 (15) | 0.0370 (17) | 0.0324 (16) | −0.0007 (17) | 0.0030 (12) | −0.0043 (18) |
| C2 | 0.042 (3) | 0.089 (4) | 0.097 (4) | 0.024 (3) | −0.026 (3) | −0.067 (3) |
| C3 | 0.041 (3) | 0.098 (4) | 0.110 (4) | 0.028 (3) | −0.023 (3) | −0.073 (4) |
| C4 | 0.0226 (17) | 0.051 (2) | 0.0404 (19) | −0.0011 (19) | 0.0003 (14) | −0.010 (2) |
| C5 | 0.034 (2) | 0.090 (4) | 0.071 (3) | 0.010 (2) | −0.006 (2) | −0.053 (3) |
| C6 | 0.031 (2) | 0.090 (4) | 0.075 (3) | 0.016 (2) | −0.007 (2) | −0.054 (3) |
| N1 | 0.039 (2) | 0.046 (2) | 0.0285 (17) | 0.0049 (16) | 0.0073 (14) | 0.0010 (16) |
Geometric parameters (Å, °)
| S1—O11 | 1.454 (3) | C2—C3 | 1.381 (7) |
| S1—O12 | 1.444 (3) | C3—C4 | 1.375 (7) |
| S1—O13 | 1.441 (3) | C4—C5 | 1.371 (6) |
| S1—C1 | 1.775 (3) | C4—C4i | 1.477 (4) |
| N1—H14 | 0.88 (5) | C5—C6 | 1.380 (6) |
| N1—H11 | 0.91 (5) | C2—H2 | 0.9500 |
| N1—H12 | 0.80 (5) | C3—H3 | 0.9500 |
| N1—H13 | 0.91 (6) | C5—H5 | 0.9500 |
| C1—C6 | 1.361 (6) | C6—H6 | 0.9500 |
| C1—C2 | 1.357 (6) | ||
| O11—S1—O12 | 111.65 (17) | C1—C2—C3 | 119.6 (5) |
| O11—S1—O13 | 112.42 (16) | C2—C3—C4 | 123.0 (5) |
| O11—S1—C1 | 105.58 (16) | C3—C4—C5 | 115.8 (4) |
| O12—S1—O13 | 113.02 (17) | C4i—C4—C5 | 121.6 (4) |
| O12—S1—C1 | 107.17 (17) | C3—C4—C4i | 122.7 (4) |
| O13—S1—C1 | 106.43 (15) | C4—C5—C6 | 122.0 (5) |
| H12—N1—H14 | 101 (5) | C1—C6—C5 | 120.6 (5) |
| H13—N1—H14 | 113 (4) | C1—C2—H2 | 120.00 |
| H11—N1—H14 | 113 (4) | C3—C2—H2 | 120.00 |
| H11—N1—H12 | 113 (4) | C4—C3—H3 | 118.00 |
| H11—N1—H13 | 104 (4) | C2—C3—H3 | 119.00 |
| H12—N1—H13 | 113 (4) | C4—C5—H5 | 119.00 |
| C2—C1—C6 | 119.1 (4) | C6—C5—H5 | 119.00 |
| S1—C1—C2 | 121.0 (3) | C5—C6—H6 | 120.00 |
| S1—C1—C6 | 120.0 (3) | C1—C6—H6 | 120.00 |
| O11—S1—C1—C2 | 0.7 (4) | C1—C2—C3—C4 | 0.6 (9) |
| O11—S1—C1—C6 | −179.5 (3) | C2—C3—C4—C5 | −0.9 (8) |
| O12—S1—C1—C2 | −118.4 (4) | C2—C3—C4—C4i | 178.9 (5) |
| O12—S1—C1—C6 | 61.4 (4) | C3—C4—C5—C6 | 0.8 (7) |
| O13—S1—C1—C2 | 120.4 (4) | C4i—C4—C5—C6 | −179.0 (5) |
| O13—S1—C1—C6 | −59.8 (4) | C3—C4—C4i—C3i | −180.0 (5) |
| S1—C1—C2—C3 | 179.6 (4) | C3—C4—C4i—C5i | 0.2 (7) |
| C6—C1—C2—C3 | −0.2 (8) | C5—C4—C4i—C3i | −0.2 (7) |
| S1—C1—C6—C5 | −179.7 (4) | C5—C4—C4i—C5i | 180.0 (5) |
| C2—C1—C6—C5 | 0.1 (7) | C4—C5—C6—C1 | −0.5 (8) |
Symmetry codes: (i) −x+1, −y, −z+1.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H11···O11ii | 0.91 (5) | 1.96 (4) | 2.861 (5) | 172 (4) |
| N1—H12···O11iii | 0.80 (5) | 2.18 (5) | 2.922 (5) | 153 (5) |
| N1—H12···O13iv | 0.80 (5) | 2.45 (5) | 2.955 (4) | 122 (4) |
| N1—H13···O13 | 0.91 (6) | 1.96 (6) | 2.841 (5) | 162 (4) |
| N1—H14···O12v | 0.88 (5) | 1.97 (5) | 2.848 (5) | 174 (4) |
| C2—H2···O11 | 0.95 | 2.48 | 2.873 (6) | 105 |
| C6—H6···O12vi | 0.95 | 2.33 | 3.243 (6) | 161 |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y, −z+1; (v) −x, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2396).
References
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
- Molecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN for Windows MSC, The Woodlands, Texas, USA.
- Pivovar, A. M., Holman, K. T. & Ward, M. D. (2001). Chem. Mater.13, 3018–3031.
- Russell, V. A., Evans, C. C., Li, W. & Ward, M. D. (1997). Science, 276, 575–579. [DOI] [PubMed]
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Swift, J. A., Pivovar, A. M., Reynolds, A. M. & Ward, M. D. (1998). J. Am. Chem. Soc.120, 5887–5894.
- Swift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater.10, 4159–4168.
- Swift, J. A. & Ward, M. D. (2000). Chem. Mater.12, 1501–1504.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061995/ng2396sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061995/ng2396Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


